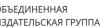


ПОДГОТОВКА К ЕГЭ СРЕДСТВАМИ УМК ПО ХИМИИ ОБЪЕДИНЕННОЙ ИЗДАТЕЛЬСКОЙ ГРУППЫ «ДРОФА-ВЕНТАНА-ГРАФ»

О.Г. Плечова, к.х.н., методист по химии объединенной издательской группы «ДРОФА»- «Вентана-граф»

Изменение в КИМ ЕГЭ по химии в 2017 г.

- Из КИМ ЕГЭ по химии будут исключены задания с выбором одного ответа. Ответ в заданиях должен устанавливаться самостоятельно. Это могут быть задания с единым контекстом, с выбором двух верных ответов из пяти, трех из шести, задания установление соответствия между позициями ДВVX множеств», расчетные задачи.
- Предлагается сгруппировать задания по отдельным тематическим блокам, в каждом из которых должны быть представлены задания как базового, так и повышенного уровней сложности; задания в блоках будут располагаться по нарастанию того количества действий, которое необходимо для их выполнения.
- Количество заданий сократится с 40 до 34.
- Первичный суммарный балл уменьшится до 58-60 (вместо 64 в 2016 г.)



Изменение в КИМ ЕГЭ по химии в 2017 г.

	Структура КИМ ЕГЭ в 2017	7 г.
	Количество заданий и их уровень сложности	Максимальный суммарный балл
Часть 1	Всего 29 заданий : - 20 заданий базового уровня сложности (№ 1–9, 12–17, 20–21, 27– 29)	22
	- 9 заданий повышенного уровня сложности (№10–11, 18–19, 22–26)	18
Часть 2	5 заданий высокого уровня сложности (№ 30–34)	20
	ИТОГО	60

Изменение в КИМ ЕГЭ по химии в 2017 г.

Система оценивания заданий			
№№ заданий	Максимальный балл за каждое правильно выполненное задание		
1–8, 12–16, 20, 21, 27–29	1 Задание считается выполненным верно, если экзаменуемый дал правильный ответ в виде последовательности цифр или числа с заданной степенью точности		
9 –11, 17 –19, 22–26	2 Задания 9–11, 17–19, 22–26 считаются выполненными верно, если правильно указана последовательность цифр. За полный правильный ответ в заданиях 9–11, 17–19, 22–26 ставится 2 балла; если допущена одна ошибка, – 1 балл; за неверный ответ (более одной ошибки) или его отсутствие – 0 баллов		
30	3		
31	4		
32	5		
33	4		
34	4		

Тенденции в изменении заданий ЕГЭ по химии

- ✓ Обновление формулировок заданий;
- Включение в задания информации, представленной в нетекстовой форме: таблицы, схемы, графики, диаграммы;
- ✓ Включение заданий, предусматривающих возможность демонстрации логики мышления;
- Усложнение заданий за счет изменения формы записи ответа;

линия умк по химии о.с.габриеляна

Структура курса химии О.С.Габриеляна в старшей школе. Углубленный уровень

Введение

Строение органических соединений

Углеводороды

Кислородсодержащие органические соединения

Углеводы

Азотсодержащие содержащие органические соединения

Биологически активные соединения

Строение атома

Строение вещества. Дисперсные системы и растворы

Химические реакции

Вещества и их свойства

Химия в жизни общества

Гидрирование (при повышенной температуре):

$$H_2$$
С H_2 + $H_2 \xrightarrow{\text{Pt, } t}$ CH_3 — CH_2 — CH_3 . пропан

Галогенирование (бромирование):

$$ho_2^{
m CH_2}$$
 $+$ Br $_2$ \longrightarrow Br $-$ CH $_2$ —CH $_2$ —CH $_2$ —Br. циклопропан 1,3-дибромпропан

Гидрогалогенирование:

$$H_2$$
С H_2 + HBr \longrightarrow CH $_3$ -CH $_2$ -CH $_2$ -Br. циклопропан 1-бромпропан

Реакции замещения

Пля циклоалканов, молекулы которых содержат пять и более атомов углерода, характерны реакции замещения, которые протекают в тех же условиях, что и для алканов (по свободнорадикальному механизму).

Галогенирование (бромирование):

Нитрование:

$$+ \text{HNO}_{3(10\%\text{-}\text{\'{i}}\text{ p-p})} \xrightarrow{120\,^{\circ}\text{C}} \stackrel{\text{NO}_2}{\longrightarrow} + \text{H}_2\text{O}.$$

Реакция дегидрирования

Характерной для циклогексана и его гомологов является способность к каталитическому дегидрированию с образованием ароматического цикла бензола (ароматизация):

ОБЪЕДИНЕННАЯ ИЗДАТЕЛЬСКАЯ ГРУППА

Волее точно этот процесс отражает уравнение:

$$R-C$$
 H + 2[Ag(NH₃)₂]OH \xrightarrow{t} альдегид

$$\longrightarrow R - C \begin{matrix} O \\ ONH_4 \\ + 2Ag \downarrow + 3NH_3 \uparrow + H_2O. \end{matrix}$$

соль карбоновой кислоты

Если поверхность сосуда, в котором проводится реакция, была предварительно обезжирена, то образующееся в ходе реакции серебро покрывает её тонкой ровной плёнкой, образуя зеркальную поверхность. Поэтому эту реакцию называют реакцией «серебряного зеркала». Её широко используют для изготовления зеркал, серебрения украшений и ёлочных игрушек.

Окислителем альдегидов может выступать и свежеосаждённый гидроксид меди (II). Образующийся в ходе реакции гидроксид меди (I) CuOH сразу разлагается на оксид меди (I) красного цвета и воду:

$$\mathrm{R-C} \overset{\mathrm{O}}{\underset{\mathrm{H}}{\bigcirc}} + 2\mathrm{Cu(OH)}_2 \overset{t}{\longrightarrow} \mathrm{R-C} \overset{\mathrm{O}}{\underset{\mathrm{OH}}{\bigcirc}} + \mathrm{Cu}_2\mathrm{O} \downarrow + 2\mathrm{H}_2\mathrm{O}.$$

творожистый мелкокристаллический

Эта реакция, так же как реакция «серебряного зеркала», используется для обнаружения альдегидов (рис. 46).

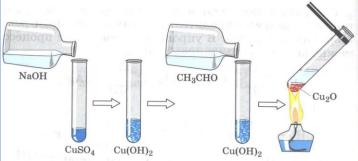


Рис. 46. Качественная реакция альдегида с гидроксидом меди (II)

Бромирование анилина

В пробирку налейте 0,5 мл анилина и 0,5 мл дистиллированной воды. Прибавьте по каплям бромной воды до появления осадка.

Вопросы

- 1. Почему обесцвечивается бромная вода?
- 2. Каково строение образующегося осадка? Напишите уравнение реакции.

Амфотерные свойства аминокислет

В пробирку налейте 2—3 мл раствора карбоната натрия и всыпьте щепотку глицина. Что наблюдаете? Напишите уравнение реакции.

Поместите в пробирку немного кристалликов глицина, смочите их несколькими каплями соляной кислоты и нагрейте. Что наблюдаете? Вылейте несколько капель образовавшегося раствора на часовое стекло. Наблюдайте образование при охлаждении кристаллов соли глицина. Напишите уравнение реакции.

Вопросы

- 1. Какие свойства глицина проявляются в каждой из этих реакций?
- 2. Сравните форму кристаллов глицина и гидрохлорида глицина. Чем они отличаются?

Получение медной соли глицина

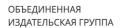
В пробирку, содержащую 2 мл раствора глицина, добавьте 1 г порошка оксида меди (II) и нагрейте до кипения.

пения. Отметьте помутнение раствора. Охладите содержимое пробирки и разбавьте водой в 2 раза.

Вопросы

- 1. Почему раствор белка при нагревании мутнеет?
- 2. Почему образующийся при нагревании осадок не растворяется при охлаждении и разбавлении водой?

Осаждение белка солями тяжёлых металлов


Данный опыт иллюстрирует применение белка как противоядия при отравлении солями тяжёлых металлов.

В две пробирки налейте по 1—2 мл раствора белка и медленно, при встряхивании, по каплям добавьте в одну пробирку насыщенный раствор сульфата меди (II), а в другую — раствор ацетата свинца. Отметьте образование труднорастворимых солеобразных соединений белка.

Цветные реакции белков

Ксантопротеиновая реакция. В пробирку налейте 2—3 мл раствора белка и прибавьте несколько капель концентрированной азотной кислоты. Нагрейте содержимое пробирки, при этом образуется жёлтый осадок. Охладите смесь и добавьте раствор аммиака до щелочной реакции (проба на лакмус). Окраска переходит в оранжевую.

Биуретовая реакция. В пробирку налейте 2-3 мл раствора белка и 2-3 мл раствора гидроксида натрия, затем 1-2 мл раствора сульфата меди (II). Появляется фиолетовое окрашивание.

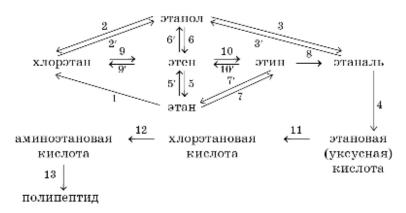
§ 4

Валентные возможности атомов химических элементов

Структура наружных энергетических уровней атомов химических элементов во многом определяет их свойства, например валентность. *Валентность* характеризует способность атомов к образованию химических связей. Электроны, участвующие в образовании химических связей между атомами, называют *валентными*.

Валентные электроны атомов элементов главных подгрупп занимают s- и p-подуровни внешнего энергетического уровня. У элементов побочных подгрупп, кроме лантаноидов и актиноидов, валентные электроны расположены на s-подуровне внешнего и d-подуровне предвнешнего энергетических уровней.

Валентность атома химического элемента определяется в первую очередь числом неспаренных электронов, принимающих участие в образовании химической связи.


Чтобы верно оценить валентные возможности атомов химических элементов, нужно рассмотреть распределение электронов в них по энергетическим уровням и подуровням и определить число неспаренных электронов в соответствии с принципом Паули и правилом Хунда для невозбуждённого (основного, или стационарного) и возбуждённого состояний атома. Атом переходит в возбуждённое состояние, получив дополнительную энергию. В результате происходит распаривание электронов внешнего слоя и переход их в другие, не самые энергетически выгодные состояния. Атом в возбуждённом состоянии обозначают соответствующим символом элемента со звёздочкой. Рассмотрим валентные возможности атомов фосфора в стационарном и возбуждённом состояниях:

$${}_{15}\text{P}\; 1s^2 2s^2 2p^6 3s^2 3p^3 \xrightarrow{\ + \ \text{\tiny 3Hepfur} \ \ \ } {}_{15}\text{P*}\; 1s^2 2s^2 2p^6 3s^1 3p^3 3d^1.$$

Генетический ряд элемента-металла, которому соответствуют амфотерные оксид и гидроксид. Ряд очень богат связями, так как в зависимости от условий они проявляют то кислотные, то основные свойства. Например, рассмотрим генетический ряд алюминия:

В органической химии также следует различать более общее понятие — «генетическая связь» и более частное понятие — «генетический ряд». Если основу генетического ряда в неорганической химии составляют вещества, образованные одним химическим элементом, то основу генетического ряда в органической химии (химии углеродных соединений) составляют вещества с одинаковым числом атомов углерода в молекуле. Рассмотрим пример генетического ряда органических веществ.

Под определение генетического ряда не подходит последний переход — образуется продукт не с двумя, а с множеством углеродных атомов, но зато с его помощью наиболее многообразно представлены генетические связи.

Контрольные и проверочные работы

ВЗ. Установите соответствие между уравнением реакции и свойством элемента фосфора, которое он проявляет в этой реакции.

УРАВНЕНИЕ РЕАКЦИИ

- A) $Ca_3(PO_4)_2 + 3SiO_2 + 5C = 2P + 5CO + 3CaSiO_3$
- B) $2H_3PO_4 + 3Ca(OH)_2 = Ca_3(PO_4)_2 + 6H_2O$
- B) $8P + 3Ba(OH)_2 + 6H_2O = 2PH_3 + 3Ba(H_2PO_2)_2$
- Γ) P + 5HNO_{3(конц)} = H₃PO₄ + 5NO₂ + H₂O

СВОЙСТВО ФОСФОРА

- 1) окислитель
- 2) восстановитель
- 3) и окислитель, и восстановитель
- 4) не проявляет окислительно-восстановительных свойств

Часть С. Задания с развёрнутым ответом

С1. На графике (рис. 8) представлена зависимость состава продуктов взаимодействия азотной кислоты с железом от концентрации кислоты.

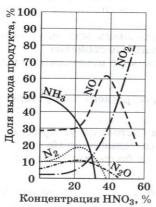


Рис. 8

Используя график, определите, какие продукты образуются при взаимодействии 50%-й азотной кислоты с железом. Образование какого продукта явля-

B2. Установите соответствие между формулой вещества и его принадлежностью к соответствующему классу соединений.

ФОРМУЛА ВЕЩЕСТВА КЛАСС (ГРУППА) НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

- A) (CH₃COO)₂Ca
- Б) K[Al(OH)₄]
- B) HCN Γ) SiO₂

- 1) кислотный оксид
- 2) основный оксид
- кислородсодержащая кислота
- 4) бескислородная кислота
- 5) основание
- 6) соль
- ВЗ. Установите соответствие между формулой органического вещества и его названием.

ФОРМУЛА

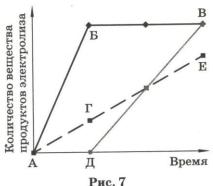
A) $C_6H_4(CH_3)_2$

E) C₆H₅—COOCH₃

B) H₃C-O-CH₃

Г) CH₃C-CH₂-CH₂-COOH

НАЗВАНИЕ


- 1) диметиловый эфир
- 2) диметилбензол
- 3) масляная кислота
- 4) метилбензоат
- 5) метаналь
- 6) метилацетат

Часть С. Задания с развёрнутым ответом

- **С1.** Для полного растворения 3,04 г оксида металла, проявляющего в оксиде степень окисления +3, потребовалось 43,8 г 10% -го раствора соляной кислоты. Установите молекулярную формулу оксида.
- **С2.** Для полного сгорания предельного амина массой 5,9 г потребовалось 11,76 л кислорода (н. у.). Определите молекулярную формулу амина. Составьте формулы всех его изомеров и дайте им названия.

Контрольные и проверочные работы

А8. На графике (рис. 7) показана зависимость количества вещества образующихся на электродах продуктов электролиза водного раствора нитрата серебра от времени.

Процессу выделения серебра на стадии электролиза раствора ${
m HNO_3}$ соответствует участок графика

$$4) A - \Gamma$$

ВЗ. Установите соответствие между схемой реакции и формулой недостающего в ней вещества.

СХЕМА РЕАКЦИИ

A) Fe + ...
$$\stackrel{t}{\longrightarrow}$$
 Fe(NO₃)₃ + NO₂ + H₂O

B) Fe + ...
$$\stackrel{t}{\longrightarrow}$$
 Fe₂(SO₄)₃ + SO₂ + H₂O

B) FeO + ...
$$\longrightarrow$$
 FeSO₄ + H₂O

$$\Gamma$$
) FeO + HNO_{3(конц)} $\longrightarrow ... + NO_2 + H_2O$

ФОРМУЛА ВЕЩЕСТВА

- 1) $H_2SO_{4(ROHII)}$
- 2) H₂SO_{4(pas6)}
- 3) $Fe(NO_3)_2$
- 4) $Fe(NO_3)_3$
- 5) HNO_{3(конц)}
- 6) HNO_{3(pa36)}

С2. При сжигании 31,6 г органического вещества выделилось 26,9 л углекислого газа, 4,48 л сернистого газа (н. у.) и 10,8 г воды. Установите молекулярную формулу вещества, если его молярная масса меньше 300 г/моль.

- **А8.** Растворы одноатомного и двухатомного спиртов можно различить с помощью
- 1) раствора хлорида железа (III)
- 2) бромной воды
- 3) гидроксида меди (II)
- 4) индикатора

Часть С. Задания с развёрнутым ответом

С1. Запишите уравнения реакций, с помощью которых можно осуществить превращения

$$C_6H_{12}O_6 \longrightarrow C_3H_6O_3 \xrightarrow{HCl} X \longrightarrow$$

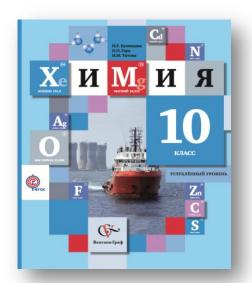
 $\longrightarrow CH_3-CH(NH_2)-COOH \longrightarrow Ala-Ala,$

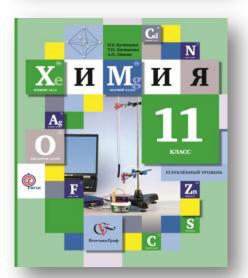
и определите неизвестное вещество Х. Укажите условия протекания реакций.

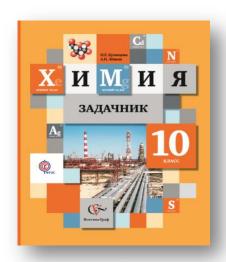
С2. При сгорании 0,31 г газообразного органического вещества образовалось 0,224 л углекислого газа, 0,45 г воды и 0,112 л азота. Назовите это вещество, если его плотность равна 1,384 г/л. Все объёмы приведены к н. у.

Контрольные работы. 10 класс

Оба углеводорода этой пары мог оом брома, так и с аммиачным р	ут взаимодействовать как с раство- аствором оксила серебра	504	вещество Х ₃			y c
.) бутин-1 и бутин-2	аствором оксида серсора.		1) этанол		3) этилен	
?) бутин-1 и бутин-2 ?) бутен-1 и 2-метилпропен			2) диэтиловый	і эфир	4) этилацета	T
в) бутадиен-1,2 и бутадиен-1,3						
в) винилацетилен и бутин-1						
у винилацетилен и бутин т						
Ответ:	en a can realizar.					
,	() ()V-			- 4,		
	не обесцвечивает бромную воду		Ответ:			
) п-ксилол, стирол, изопентан						5 40
д) циклогексан, толуол, <i>о</i> -ксило				Тестовые задані		
в) этилбензол, гексен-2, изопрог в) циклогексен, бензол, гексан	илоензол			и с множестве		
ј циклогексен, оензол, гексан	1a Bt	0	37			
Ответ:	are p	9.	Установите сос	ответствие между і	названием веще	ства и его молеку
24 415	V 1921 N 1 8 1		лярной формул			
Іо механизму электрофильног	о присоединения протекают реак-		НАЗВАНИЕ В	ЕЩЕСТВА	ФОРМ	ЛУЛА
ии между			А) 3-метилпент	гандиаль	1) C ₆ H	00
) бензолом и бромом			Б) циклогексан	нон	2) C ₆ H	
) бутаном и хлором			В) диизопропи.	ловый эфир	$3) C_6H$	
) бутадиеном-1,3 и хлороводоро	олом		Г) этилбутаноа	T	4) C ₆ H	
) пропеном и водой	Same C				5) C ₆ H	
д) этиленом и бромом	W same fa				6) C ₆ H	1 ₁₄ O ₂
) бензолом и азотной кислотой	g grant ganat, e.e. dikeri		Ответ:			
) вгд	3) fre					
авд	4) Bre		A	Бирены	В	Г
· Carriago de la companya del companya de la companya de la companya del companya de la companya				1.47931.06.944.69		1
Omsem:				1997119 1915 340 6-3	10.344	
Верны ли следующие суждения	>					
	и(II) ацетальдегид проявляет свой-	10.	Аминогруппы н	в молекуле содержа	ат	
тва восстановителя.	и(п) ацетальдегид проявляет свои-		1) N-этилацетал	мил		
	ьдегида с водородом образуется ме-		2) изолейцин			
ановая кислота.	оденида с водородом обрабуется ме		3) амилозу			
) верно только А	V-1		4) N-метилалан			
верно только Б			5) N-метиланил			
в) верны оба суждения			6) триброманил	ИН		
а) оба суждения неверны	3, 1, 27 (1) (20)		Ответ:			
Omsem:						7.65 T
			2	adayya o paga		A. mod (1
Гля попонии проврамений			3	адания с развёрн	іутым ответ	OM


Контрольные работы. 11 класс


Ответ:	Once are	ПРОВЕРОЧНАЯ Р
Установите соответствие меж продуктами реакции.	сду исходными веществами и	Неметаллы: атомы и п Кислород, озо
исходные вещества	ПРОДУКТЫ РЕАКЦИИ	
1) Fe + $H_2SO_{4(pa36)}$	а) $FeSO_4$ и H_2	ВАРИАН
2) $\text{Cu} + \text{AgNO}_{3}$ 3) $\text{Al(OH)}_{3} + \text{KOH}_{(\text{конц})} + \text{H}_{2}\text{O}$	б) Fe ₂ (SO ₄) ₃ и H ₂ в) K[Al(OH) ₄] г) Ag и Cu(NO ₃) ₂	1. Электронная формула атома не 1) $2\overline{e}$, $8\overline{e}$, $2\overline{e}$ 2) $2\overline{e}$, $8\overline{e}$, $3\overline{e}$
Ответ:		Ответ:
	у исходными веществами и из-	 Названия простых веществ, к н. у.), — это аргон, фтор, иод
исходные вещества	ИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯ	2) хлор, озон, водород Ответ:
1) $FeCl_2 + Cl_2$	a) $0 \rightarrow -1$	3. Окислительные свойства хара
2) $Fe(OH)_2 + O_2 + H_2O$	$6)+6\longrightarrow +4$	ментов ряда
3) Fe + $CuSO_4$	$\begin{array}{c} \text{B) } 0 \longrightarrow -2 \\ \text{r) } +2 \longrightarrow 0 \end{array}$	1) F, Cl, O 2) H, Ca, Br
Этвет:		Ответ:
При обжиге известняка, содера	жащего 2% примесей, получи-	 4. Для алмаза и графита справедл 1) оба вещества при сгорании об 2) обладают электропроводност 3) имеют атомную кристалличе 4) на внешнем энергетическом трона
3 10% -й раствор сульфата меді	и(II) массой 300 г опустили же-	Omsem:
гезную пластину массой 40 г. I	После окончания реакции пла-	5. Вычислите объёмы азота и кис.
тину промыли, высушили и ва тов, вступивших в реакцию.	звесили. Найдите массу метал-	Ответ:
Этвет:	MHOST / W. s.	
Цополните генетический ряд ния реакций в соответствии со \rightarrow $\mathrm{Al_2O_3}$. Используйте метод эпительно-восстановительных р	о схемой $\mathrm{Al} \longrightarrow \mathrm{AlCl}_3 \longrightarrow \mathrm{X} \longrightarrow$ лектронного баланса для окис-	ВАРИАН 1. Химические элементы, сходны это 1) азот и сера
)maams		2) фосфор и фтор
Этвет:	Оценка:	Ответ:


АБОТА № 15

ростые вещества. н. возлух

	2		
		Į	Цата выполнения
	BAP	IAHT 1	ar (fi
1.	Электронная формула атома	OTTO THE STREET	
	1) $2\overline{e}$, $8\overline{e}$, $2\overline{e}$ 2) $2\overline{e}$, $8\overline{e}$, $3\overline{e}$	$3) 2\overline{e} 8\overline{e} 7\overline{e}$	$4) 2\overline{e}, 1\overline{e}$
	-	0,20,00,10	1) 20, 10
•	Omsem:		2/ 1 / 1 / 1
2.	Названия простых веществ н. у.), — это	, которые являюто	ся газами (при
	1) аргон, фтор, иод	3) сера, гелий	, кислород
	2) хлор, озон, водород	4) неон, фосфо	ор, хлор
	Omsem:	401	
3.	Окислительные свойства ха ментов ряда	арактерны для ато	омов всех эле-
	1) F, Cl, O 2) H, Ca, Br	3) Na, Be, Al	4) Fe, P, O
	Ответ:		0.50
4.	Для алмаза и графита справ	едливы утвержден	ия:
	1) оба вещества при сгорани	и образуют оксид у	
	2) обладают электропроводн		
	3) имеют атомную кристалля 4) на внешнем энергетическо		меется 1 элек-
	трона	om ypoblic aromob h	meeten 4 biek
	Ответ:		
5.	Вычислите объёмы азота и к	ислорода в 300 м ³ г	воздуха.
	Ответ:	72 77 77 77 77	Оценка:
		Д	ата выполнения
	ВАРИ	AHT 2	
1.	Химические элементы, сход		свойствам,
	1) азот и сера	3) кислород и г	водород
	2) фосфор и фтор	4) фосфор и аз	
	Ответ:	ATTOM SECTION STATE ASSESSMENT	

УМК ПО ХИМИИ н.е.кузнецовой 10-11 КЛАСС

Структура курса химии Н.Е.Кузнецовой в старшей школе. Углубленный уровень

Теоретические основы органической химии
Классы органических соединений
Вещества живых клеток
Органическая химия в жизни человека
Строение вещества. Вещества и их системы
Учение о химических реакциях
Обзор химических элементов и их соединений на основе
периодической системы

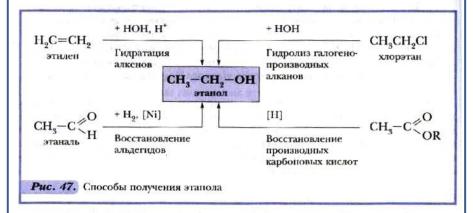
Химия в нашей жизни

Глава 6. Галогенопроизводные углеводородов

Вы уже познакомились с наиболее простыми органическими соединениями — *углеводородами*, состоящими из атомов двух элементов: углерода и водорода.

Другие органические соединения имеют более сложный состав. В молекуле органического вещества могут оказаться атомы практически любого элемента периодической системы. Чаще всего они входят в состав разных функциональных групп.

В природе всё устроено экономично и совершенно. Она обходится очень небольшим числом функциональных групп, наличие которых обеспечивает существование всего её многообразия. Один из главных механизмов достижения этого многообразия — взаимопревращения органических соединений, принадлежащих к разным классам.


В этой главе вы познакомитесь с галогенсодержащими, а именно с галогенопроизводными углеводородов (алканов и алкенов). В последующих гла-

Бо́льшую часть промышленного спирта во всём мире синтезируют из этилена, который получают из нефти и природного газа:

$$\mathrm{CH_2}\!\!=\!\!\mathrm{CH_2} + \mathrm{H_2O} \xrightarrow{t,\,p,\,\,\mathrm{kat.}} \mathrm{C_2H_5OH}$$

Изучите способы промышленного получения этанола (рис. 47).

Задание. Конкретизируйте данную схему уравнениями реакций. Назовите продукты реакций. Обсудите результаты с товарищем.

Выводы

- 1. Химические реакции предельных одноатомных спиртов, характеризующие их основные химические свойства, можно разделить на три группы:
- реакции, сопровождающиеся замещением или отщеплением гидроксильной группы, т. е. с разрывом связи R [₹] OH (реакции дегидратации);
- окислительно восстановительные реакции.
- 2. При взаимодействиях атомы и группы атомов (радикалы и функциональные группы) взаимно влияют друг на друга.
- **3.** Физические и химические свойства спиртов обусловливают их применение и получение.

Спирты в жизни человека. Спирты и здоровье (Дополнительный материал к главе 7)

Спирты — это органические вещества, содержащие в молекуле одну или несколько гидроксильных или спиртовых групп (—OH), соединённых с атомом углерода. Примерами веществ этого класса являются: $\mathrm{CH_3OH}$ — метанол, или метиловый спирт, $\mathrm{C_2H_5OH}$ — этанол, или этиловый спирт, $\mathrm{CH_2OH}$ —С $\mathrm{CH_2OH}$ — этандиол, или этиленгликоль, $\mathrm{CH_2OH}$ —С HOH —С $\mathrm{CH_2OH}$ — пропантриол, или глицерин, и др. В старину эти вещества называли древесными и винными спиртами.

Метанол

В одной из старинных рукописей есть упоминание о том, что арабский алхимик попробовал на вкус бесцветную жидкость, полученную им при нагревании сухой древесины в реторте, и мгновенно ослеп. Эта жидкость есть не что иное, как древесный метиловый спирт, или метанол.

Метиловый спирт по внешнему виду и запаху почти неотличим от этилового спирта (винного спирта, или этанола). Однако метанол — очень сильный яд. Приём внутрь всего 10—20 мл этого вещества приводит к потере зрения, а 30—50 мл — к летальному исходу, причина которого заключается в наступающем параличе дыхательных путей. Столь сильное отравляющее действие метанола, по-видимому, связано с его окислением в организме до формальдегида и муравьиной кислоты.

Интересно отметить, что если этанол был известен человечеству с глубокой древности, то с метанолом люди познакомились намного позднее. В России его получали в XVI в. под названиями «мефиль», «камфин», «мефиловый спирт» и использовали для освещения домов, изготовления лаков и политур. Сырьём для получения метанола служила надсмольная вода — продукт сухой перегонки дерева.

Этанол

В одной из арабских легенд рассказывается о том, как один алхимик, желая получить «эликсир жизни», стал перегонять старое вино, добавив к нему поваренной соли. В итоге он получил жидкость, попробовав которую, алхимик с удивлением обнаружил, что она оказывает опьяняющее воздействие. Поражённый свойствами вещества «прогонять печаль и вызывать бодрость», алхимик решил, что ему удалось открыть «воду жизни». Вещество также называли

₽DDOΦΩ

Таблица 12. Содержание этанола в некоторых спиртных напитках

Название напитка	Основное сырьё для его производства	Содержание в напитке этанола, % от общего объёма
Пиво	Ячмень, пшено	3,5-8
Вино	Виноград и другие плоды и ягоды	До 12
Бренди	Виноград	40-45
Виски	Кукуруза, ячмень, рожь	45-55
Ром	Сахарный тростник	45
Водка	Рожь, пшеница, картофель	40-50

Таблица 13. Влияние алкоголя на поведение человека

Доза алкогольного напитка ¹	Содержание алкоголя в крови, %	Особенности поведения человека
2	0,05	Неестественное поведение
4	0,10	Нарушена координация движений, замедленная реакция
6	0,15 0,25	Очень замедленная реакция, поведение не отвечает ситуации. Потеря координации
8	0,20	Духовная и физическая депрессия
8-12	0,20-0,30	Несвязная речь
12-14	0,30-0,35	Человек столбенеет (анестезия, снижение температуры тела)
14–18	0,35-0,45. Более 0,45	Потеря сознания. В 50% случаев — летальный исход

¹ Доза алкогольного напитка указана в условных единицах. Одна условная единица равна 30 мл виски 45°, или 360 мл пива, или 150 мл вина.

Глава 1. Основные понятия и законы химии. Строение атома

Основные понятия химии.— Стехиометрические законы

Что изучает химия? Что называют атомом, моле

Что называют атомом, молекулой, химическим элементом? Каковы основные положения атомно-молекулярного учения и какое значение оно имело для развития химии?

Химия относится к числу естественных наук, изучающих окружающий мир и законы природы. Из курсов обществознания и физики вам известно, что окружающий нас мир материален: он состоит из различных видов материи — веществ и полей, или излучений (солнечная радиация, рентгеновские лучи и др.). Как вы уже знаете, химия — наука о веществах и их превращениях друг в друга. Основные понятия химии, такие как химический элемент, атом, молекула, химическое соединение, простое вещество, сложное вещество, химическая реакция, составляют основу атомно-молекулярного учения. С этими понятиями, а также с некоторыми стехиометрическими законами вы впервые познакомились в 8 классе. Однако по мере изучения вами химии их содержание углублялось и расширялось.

Так, на начальном этапе изучения химии веществом называли то, из чего состоят физические тела.

К веществам относят атомы, молекулы и состоящие из них газы, жидкости и твёрдые субстанции, имеющие не только природное, но и искусственное происхождение. Важной характеристикой вещества и частиц, из которых оно состоит, является масса покоя. Удалённые в космос предметы и вещества, составляющие их, не имеют веса (находятся в состоянии невесомости), но имеют ту же самую массу, что и на Земле. Долгое время масса служила кри-

ОБЪЕДИНЕННАЯ ИЗДАТЕЛЬСКАЯ ГРУППА

Таблица 31. Физико-химические характеристики p-элементов VIIA-группы

Sex of confine at the sex	Химический элемент				
Характеристика	F	CI	Br	I	
Электронная формула	$2s^22p^5$	$3s^23p^5$	$4s^24p^5$	$5s^25p^5$	
Энергия ионизации, кДж/моль	1681	1251,1	1139,9	1008,4	
Относительная электроотрицательность	4,0	3,0	2,8	2,5	
Радиус атома, нм	0,064	0,099	0,114	0,133	
Радиус иона Hal-, нм	0,133	0,181	0,196	0,220	
Возможные степени окисления в соединениях	-1	-1, +1, +3, +4, +5, +7	-1, +1, +3, +5, +7	-1, +1, +3, +5, +7	
Содержание в организме человека, % массы	10-5	10-1	10-4	10-4	
Содержание в земной коре, %	0,066	0,05	2,1 · 10-4	4 · 10-5	

Астат — радиоактивный элемент с малым периодом полураспада, отличающийся по своим свойствам от остальных галогенов.

Задание. Вы уже знаете, что галогены, кроме фтора, имеют различные степени окисления. Приведите соответствующие примеры таких соединений галогенов.

У галогенов степень окисления атома в соединениях находится в пределах от -1 (атом приобретает конфигурацию благородного газа) до +7 (кроме фтора, который является самым электроотрицательным элементом в периодической системе) (табл. 32).

Элементы хлор и бром по значению относительной электроотрицательности близки к азоту, иод — к сере. Фтор обладает наименьшим атомным радиусом, в его атоме на валентном слое нет d-орбитали, и в результате он проявляет только степень окисления, равную -1. Таким образом, фтор — простое вещество может быть лишь окислителем.

ники для подогрева газа и регулирования температуры катализатора, трубы парового котла.

Оптимальная схема синтеза аммиака и устройство реактора. Азотовод родную смесь стехиометрического состава, свободную от ядов, с минимальны содержанием инертных веществ сжимают в турбокомпрессоре. Выходящу из реактора газовую смесь охлаждают последовательно в водяном и аммиа ном холодильниках. Жидкий аммиак отделяют в сепараторах, а непрореаг ровавшую азотоводородную смесь дожимают в циркуляционном компресс ре и вместе со свежим газом направляют в реактор — колонну синтеза аммиака (рис. 71).

В колонне азотоводородную смесь необходимо нагреть до температурь при которой начинается каталитическая реакция, и пропустить через сло железного катализатора (размер его частиц 5-6 мм в поперечнике). В ход реакции избыточное тепло отводят и возможно полнее утилизируют тепло ту реакции. Поэтому в колонне нужно разместить катализатор, теплообмет

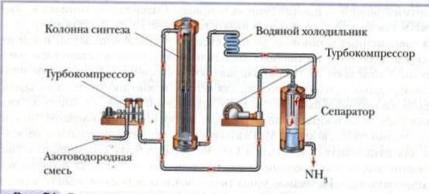
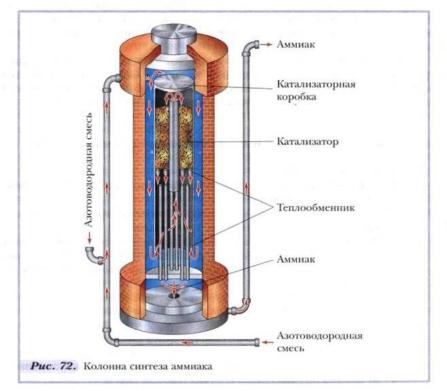



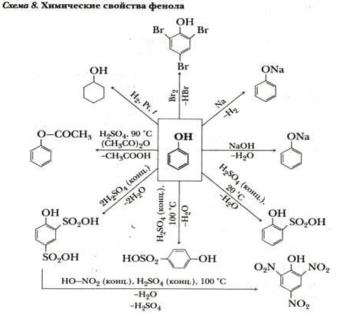
Рис. 71. Схема синтеза аммиака при давлении 30 МПа

Рассмотрим особенности аппарата, в котором проводят реакцию при высоком давлении и температуре до 550 °C. Реакционные аппараты для синтеза аммиака представляют собой цилиндры с толщиной стенок корпуса около 25 см, диаметром до 2,1 м, высотой до 24 м. Стенки аппарата подвергаются изнутри давлению до 30 Мн/м², действию реагентов на углерод и другие вещества, входящие в состав сталей. Водород диффундирует через сталь при повышенных температурах и давлениях. Корпуса колонн для синтеза аммиака изготовляют из хромомолибденовых, хромоникелевых с добавкой титана и других легированных сталей.

Катализаторную коробку и теплообменник размещают внутри колонны синтеза аммиака так, чтобы между их стенками и корпусом колонны оставалось свободное пространство (рис. 72).

399

ОБЪЕДИНЕННАЯ ИЗДАТЕЛЬСКАЯ ГРУППА


Задачники

Фенолы

Фенолы — органические вещества, в молекулах которых гидроксогруппа —ОН соединена непосредственно с бензольным кольцом.

$$CH_3$$
 CH_3 CH_3

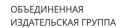
На схеме 8 представлены химические свойства фенола.

Вопросы и задания

7-44. Дайте названия веществам, формулы которых приведены ниже по заместительной номенклатуре:

OH

$$CH_3$$
 CH_3
 CH_3


7-45. Вещества, формулы которых приведены ниже, содержат или спиртовые, или фенольные, или и те и другие гидроксогруппы. Найдите спиртовые и фенольные гидроксильные группы в этих веществах:

парацетамол (лекарственный препарат)

эстрадиол (женский половой гормон)

- 7-46. Изомерные фенолы состава С₇H₂OH применяют в медицинской практике как антисептик под названием «лизол». Изобразите формулы этих фенолов и дайте им названия по номенклатуре IUPAC.
- 7-47. Ниже приведены формулы нескольких фенолов и указан их запах. Обратите внимание, как он зависит от положения заместителей. Составьте названия этих фенолов по систематической номенклатуре:

59

58

Задачники

ной кислоты. Составьте схему электронного баланса и определите коэффициенты в уравнении реакции.

- 9-22. Составьте формулы трех изомерных ароматических карбоновых кислот состава С₆Н₄(СООН)₂. Орто-изомер называется фталевой кислотой, мета-изомер изофталевой кислотой, пара-изомер терефталевой кислотой. Напишите уравнения реакций этерификации этих кислот с метиловым спиртом. Обратите внимание эфир фталевой кислоты (диметилфталат) используется как репеллент вещество, отпугивающее насекомых.
- 9-23. Орто-изомер ароматической карбоновой кислоты С₆Н₄(COOH)₂ называется фталевой кислотой. При 200 °C фталевая кислота может подвергаться дегидратации с образованием фталевого ангидрида С₆Н₄(CO)₂O. При конденсации фталевого ангидрида с фенолом образуется фенолфталеин:

фенолфталеин

Составьте уравнения реакций, упомянутых в задании, используя структурные формулы веществ.

Расчетные задачи

- 9-24. Уксусная эссенция раствор уксусной кислоты, в котором ее массовая доля 80%. Для приготовления некоторых блюд используется столовый уксус 9%-й раствор уксусной кислоты. Вычислите, какой объем уксусной эссенции и какой объем воды потребуются для приготовления 200 г столового уксуса. Плотности растворов примите равными 1 г/см³.
- 9-25. Смешали два раствора уксусной кислоты: 12%-й раствор массой 300 г и 20%-й раствор массой 200 г. Вычислите массовую долю уксусной кислоты в образовавшемся растворе.
- 9-26. Смешали два раствора: 12%-й раствор уксусной кислоты массой 300 г и 20%-й раствор муравьиной кислоты массой 200 г. Вычислите массовую долю кислот в образовавшемся растворе.
- 9–27. Вычислите массу ацетата натрия, который получится в результате взаимодействия ледяной уксусной кислоты¹ массой 6 г с избытком гидроксида натрия.

раствора аммиака). Плотность аммиачной воды составляет 0,9 г/мл, выход аммиака примите равным 20 %.

- 7-264. Вычислите выход продукта реакции каталитического окисления аммиака на промышленной установке, если при окислении 102 кг аммиака в среднем получается 117 кг монооксида азота.
- 7-265. Имеется смесь сульфата аммония, хлорида калия и нитрата калия. Если 4 г такой смеси обработать избытком гидроксида калия при нагревании, то можно получить 224 мл (н. у.) газообразного вещества. Если точно такую же массу смеси растворить в воде и добавить избыток раствора нитрата серебра, то образуется 1,435 г осадка. Вычислите массовые доли компонентов в исходной смеси.
- 7-266. Навеску смеси хлорида аммония, сульфата аммония и сульфата натрия массой 65 г растворили в воде и добавили избыток раствора хлорида бария. В результате образовался осадок массой 93,2 г. Когда точно такую же навеску сухой смеси обработали щелочью, то получили 47,6 г 25 %-го раствора аммиака. Вычислите массовые доли каждого из компонентов в смеси.

7.11. Оксиды азота. Азотная кислота. Нитраты

Состав преобладающих продуктов восстановления азотной кислоты металлами

	Металлы					
Массовая доля	активные	средней активности	мало- активные	благородные		
HNO ₃ , %	Li, Cs, Rb, K, Ba, Sr, Ca, Na, Mg, Al Mn, Zn, Cr, Cd, Co, Ni, Sn, Pb		Bi, Cu, Ru, Hg, Ag, Rh, Pd	Ir, Pt, Au		
> 80 %	NO ₂	NO ₂	NO ₂	-		
45-75 %	N ₂ O	NO	NO ₂	-		
10-40 %	N ₂ ·	N ₂ O	NO	-		
< 5 %	NH ₄ NO ₃	N ₂	-	_		

Примечание. В очень концентрированных растворах HNO_3 (> 80 %) пассивируются следующие металлы: Al, Mn, Cr, Fe, Co, Pb, Bi.

79

¹ Ледяная уксусная кислота — безводная уксусная кислота, ее температура плавления — 16,64 °C. Она застывает при температуре чуть ниже комнатной, поэтому ее называют «ледяной».

Задачники

Вопросы и задания

- 7-267. Какой из перечисленных оксидов азота взаимодействует с водой: NO, N₀O, NO₉, N₉O₄, N₉O₅? Составьте уравнения возможных реакций. Какая из них будет окислительно-восстановительной?
- 7-268. Какой из перечисленных оксидов азота взаимодействует с гидроксидом натрия: NO, NO, NoO, NoO, NoO, Cоставьте уравнения возможных реакций. Какая из них будет окислительно-восстановительной?
- 7-269. Укажите валентность и степень окисления азота: а) в азотной кислоте; б) в оксиде азота (V). Какую важную особенность следует учитывать при описании строения молекулы азотной кислоты?
- 7-270. Какие из изученных вами органических соединений вступают в реакции нитрования? Приведите примеры, запишите соответствующие уравнения реак-
- 7-271. Д.И. Менделеев писал: «Ни одно уравнение не выражает всего, что в действительности при действии металлов на азотную кислоту, так как образуется всегда несколько окислов азота вместе или последовательно - один за другим, по мере нагревания и изменения крепости кислоты...» Почему уравнения реакций азотной кислоты с металлами, которые мы записываем, достаточно условны? Какие продукты могут образовываться при взаимодействии металлов с азотной кислотой? От каких факторов зависит глубина восстановления азотной кислоты в этих реакциях?
- 7-272. Преобразуйте данные схемы в уравнения реакций, расставьте коэффициенты методом электронного баланса:
 - a) Cu + HNO₃ (pas6.) → ...
 - б) Cu + HNO₃ (конц.) → ...
 - в) Hg + HNO₃ (конц., гор.) → Hg(NO₃)₂ + ...
 - r) Hg + HNO₄ (разб., хол.) → Hg₉(NO₄)₉ + ...
 - д) Fe + HNO₃ (оч. разб.) → Fe(NO₃)₉ + N₉ + ...
 - e) Fe + HNO₅ (pas6.) → Fe(NO₅)₅ + NO + ...
 - ж) S + HNO₃ (конц.) → H₂SO₄ + ...
 - з) P + HNO₄ (конц.) → H₂PO₄ + ...
 - и) I₉ + HNO₈ (конц.) → HIO₈ + ...
- 7-273. Напишите уравнение реакций концентрированной азотной кислоты: а) с серебром; б) с цинком; в) с магнием. Составьте схемы электронного баланса.
- 7-274. Напишите уравнение реакций азотной кислоты:
 - а) с магнием, оксидом магния, гидроксидом магния, карбонатом магния;
 - б) с медью, оксидом меди (II), гидроксидом меди (II), карбонатом гидроксомеди (II).

7-279. В трех склянках находятся растворы:

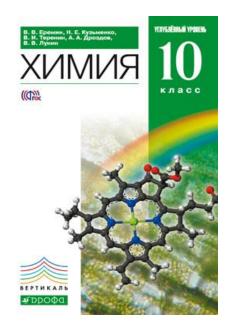
- а) нитрата натрия, нитрата меди (II) и нитрата аммония;
- б) нитрата калия, ацетата калия и воды;
- в) нитрата калия, нитрата свинца (II) и нитрита натрия.

Как химическим путем идентифицировать эти вещества? Напишите уравнения реакций, составьте полные и сокращенные ионные уравнения.

- 7-280. В четырех закрытых сосудах находятся газы:
 - а) азот, кислород, оксид азота (II), оксид азота (IV);
 - б) водород, оксид азота (I), оксид серы (IV), хлор;
 - в) оксид азота (II), оксид азота (IV), оксид азота (I), азот.

Как можно идентифицировать эти вещества?

- 7-281. Как можно, имея в распоряжении природный газ и воздух и не используя иных реактивов, но располагая всем возможным оборудованием, получить нитрат аммония? Запишите уравнения реакций.
- 7-282. Можно ли, имея в распоряжении только воздух и воду и не используя иных веществ, но располагая всем возможным оборудованием, получить соль? Если это возможно, запишите уравнения реакций.
- 7-283. Медь растворили в азотной кислоте. Образовавшийся раствор выпарили, а сухой остаток прокалили. В результате получили 8 г вещества. Какова масса исходной меди?
- 7-284. Свинец растворили в азотной кислоте. Образовавшийся раствор выпарили, а сухой остаток прокалили. В результате получили 44,6 г вещества. Какова масса исходного свинца?
- 7-285. Промышленность выпускает два сорта концентрированной азотной кислоты: первый (с массовой долей НОО, 98%) и второй (с массовой долей НОО, 97%). Вычислите объем раствора азотной кислоты первого сорта и объем раствора азотной кислоты второго сорта, которые потребовались бы для реакции с 32 г меди для получения оксида азота (IV). (Плотность каждого раствора составляет 1,5 г/мл.)
- 7-286. Промышленность выпускает три сорта разбавленной азотной кислоты: 55 %-й, 47 %-й и 45 %-й. Вычислите массу каждого из сортов, который потребуется для получения 1 т нитрата аммония.
- 7-287. Навеску латуни (сплава меди с цинком) массой 100 г растворили в азотной кислоте. Полученный раствор нитратов выпарили и полученную смесь безводных нитратов взвесили. Масса нитратов составила 292,56 г. Вычислите массовые доли цинка и меди в латуни.
- 7-288. При растворении оксида азота (IV) в воде образуется смесь азотной и азотистой кислот. Составьте уравнение реакции и рассчитайте массовые доли кислот в растворе, полученном при растворении 2,24 л (н.у.) оксида



159

УМК ПО ХИМИИ **АВТОРСКОГО** КОЛЛЕКТИВА МГУ В.В. ЕРЕМИНА, А.А. ДРОЗДОВА, н.е. кузьменко, В.В.ЛУНИНА И ДР.

Структура курса химии в старшей школе. Углубленный уровень

Повторение и углубление знаний Основные понятия органической химии.

Углеводороды.

Кислородсодержащие органические соединения

Азот- и серосодержащие содержащие органические соединения.

Биологически активные вещества

Синтетические высокомолекулярные соединения.

Неметаллы

Общие свойства металлов

Металлы главных подгрупп

Металлы побочных подгрупп

Строение вещества

Теоретическое описание химических реакций

Химическая технология

Химия в повседневной жизни

Химия на службе общества

Химия в современной науке

Окислительно-восстановительные реакции в органической химии

В органической химии окислением называют реакцию, при которой под действием окислителя органическое вещество приобретает атомы кислоро теряет атомы водорода. В схеме реакции окисления окислитель обознача символом кислорода, заключённым в квадратные скобки:

$$\text{CH}_3\text{CHO} \xrightarrow{[0]} \text{CH}_3\text{COOH};$$

$$CH_3CH_2OH \xrightarrow{[O]} CH_3CHO + H_2O.$$

Восстановление — реакция, противоположная окислению. Под действием восстановителя органическое соединение присоединяет атомы водорода и теряет атомы кислорода. Восстановитель обозначают символом водорода, заключённым в квадратные скобки:

$$CH_2CHO \xrightarrow{2[H]} CH_2CH_2OH;$$

$$RNO_2 \xrightarrow{6[H]} RNH_2$$
.

Потеря атома водорода соответствует отрыву одного электрона, а присоед атома кислорода — потере двух электронов. Это можно использовать для расстановки коэффициентов в уравнениях органических реакций, не приб электронно-ионному балансу.

Так, в реакции

$$CH_3$$
— CH = CH_2 + $KMnO_4$ + H_2SO_4 \longrightarrow $C_2H_4O_2$ + CO_2 + $MnSO_4$ + C_2SO_4 + CO_2 + CO_2 + CO_3 + CO_4 + CO_5 +

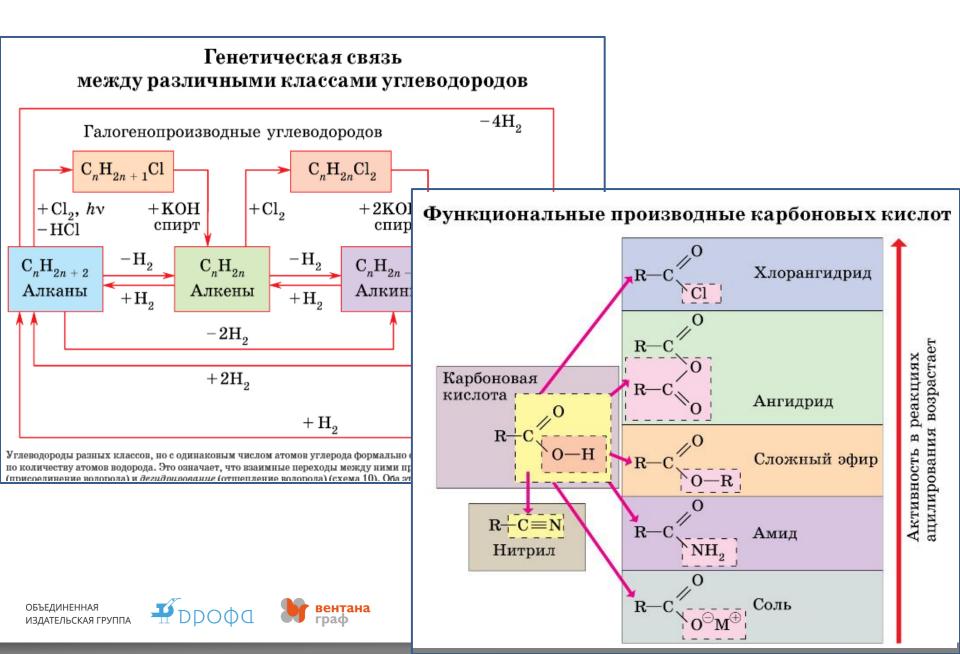
процессы электронного переноса можно условно представить так:

$$\begin{array}{c|c} C_{3}H_{6}+4[O]-2[H] & \longrightarrow C_{2}H_{4}O_{2}+CO_{2} & 1 \\ \hline & -8\bar{e} & -2\bar{e} \\ \hline & -10\bar{e} & \\ \hline & Mn+5\bar{e} & \longrightarrow Mn & 2 \\ \hline & C_{3}H_{6}+2Mn+4[O]-2[H] & \longrightarrow C_{2}H_{4}O_{2}+CO_{2}+2Mn \end{array}$$

Степень окисления атома углерода в органических веществах — величина условная. Она никак не связана с реальным распределением электронной плотности и носит формальный характер. В то же время знание степеней окисления позволяет использовать для расстановки коэффициентов метод электронного баланса.

В углеводородах и углеводородных радикалах степень окисления каждого атома углерода равна взятому со знаком «минус» числу атомов водорода, которые с ним связаны:

В производных углеводородов можно применять следующее правило: степень окисления любого атома углерода равна алгебраической сумме числа всех его связей с атомами более электроотрицательных элементов (О, N, Cl и т. д.), учитываемых со знаком «+», и числа связей с атомами водорода, учитываемых со знаком «-». При этом связи с другими атомами углерода не учитывают.


Так, в метаноле $\mathrm{CH_3}$ —OH атом углерода связан с тремя атомами водорода (это даёт условный заряд -3) и с одним атомом кислорода (это даёт +1). Суммарно получаем -3+1=-2.

В уксусной кислоте, рассуждая аналогично, получаем:

Таким образом, в рассмотренном выше примере полуреакция окисления имеет вид:

$$\begin{array}{c} -3 & -1 & -2 \\ \mathrm{CH_3} - \mathrm{CH} = \mathrm{CH_2} \longrightarrow \mathrm{CH_3COOH} + \mathrm{CO_2} \\ -1 & \mathrm{C} - 4\bar{e} \longrightarrow \mathrm{C} \\ -2 & +4 \\ \mathrm{C} - 6\bar{e} \longrightarrow \mathrm{C} \end{array} \right\} \stackrel{+3}{\overset{-1}{\overset{-2}}}{\overset{-2}{\overset{-2}{\overset{-2}{\overset{-2}{\overset{-2}{\overset{-2}}{\overset{-2$$

Это соответствует балансу:

Практическая работа 8. Идентификация органических соединений

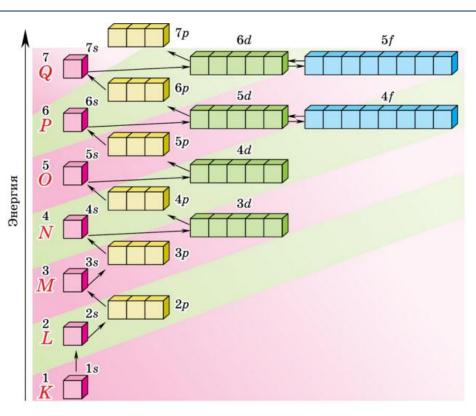
Реактивы: растворы фенола, формальдегида, уксусной кислоты, ацетата натрия, гидроксида натрия, стеарата натрия, глицерина, этанола, ацетона, глюкозы, сахарозы, крахмала (клейстер), олеиновой кислоты; ацетат натрия, бромная вода, раствор хлорида железа(III), раствор сульфата меди(II), фенолфталеин, медная проволока, цинк, метилоранж.

Оборудование и материалы: штатив с пробирками, спиртовка.

В трёх пронумерованных пробирках, закрытых пробками, находятся растворы фенола, формальдегида и уксусной кислоты. При помощи качественных реакций (см. приложение 1) идентифицируйте эти вещества.

В трёх пронумерованных пробирках находятся растворы ацетата натрия, гидроксида натрия и стеарата натрия. При помощи качественных реакций идентифицируйте эти вещества.

В трёх пронумерованных пробирках, закрытых пробками, находятся растворы глицерина, этанола и ацетона. При помощи качественных реакций определите, в какой пробирке находится какое вещество.


В трёх пронумерованных пробирках находятся растворы глюкозы, сахарозы и крахмала (клейстер). При помощи качественных реакций определите, в какой пробирке находится вещество.

Докажите, что ацетат натрия — это соль слабой кислоты.

Различите глюкозу, глицерин и уксусную кислоту при помощи одного и того же реактива.

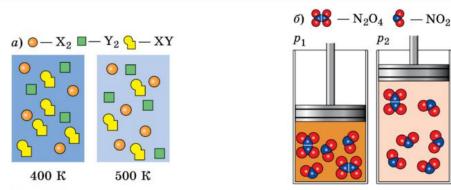


Рис. 133. Последовательность заполнения электронами энергетических уровней и подуровней

Обратите внимание на то, что в пределах одного энергетического уровня орбитали с разным квантовым числом l, например 2s и 2p, имеют разную энергию. Это происходит из-за отталкивания электронов. В пределах одного подуровня, т. е. при заданных n и l, энергии орбиталей одинаковы, как и в атоме водорода. Например, все пять 3d-орбиталей характеризуются одним и тем же значением энергии .

3. Правило Хунда утверждает, что в основном состоянии атом имеет максимально возможное число неспаренных электронов в пределах определённого подуровня. Например, если на 2*p*-подуровне находятся три электрона, то они должны находиться на трёх разных орбиталях.

Puc. 157. Влияние температуры и давления на химическое равновесие

- 5. На рисунке 157, б изображены равновесные количества веществ в системе $2NO_{2(r)}$ $\longrightarrow N_2O_{4(r)}$ при давлениях p_1 и p_2 . Определите, какое давление больше, p_1 или p_2 .
- 6. Как влияет увеличение давления на состояние равновесия в следующих реакциях:

a)
$$C_8H_{18(r)} \longleftrightarrow C_4H_{10(r)} + C_4H_{8(r)};$$

B)
$$CaCO_{3(TD)} \longleftrightarrow CaO_{(TD)} + CO_{2(T)}$$
?

7. Как влияетуменьшение давления на состояние равновесия в следующих реакциях:

a)
$$Xe_{(r)} + 2F_{2(r)} \longrightarrow XeF_{4(r)}$$
;

$$6) H_{2(r)} + Br_{2(r)} \longrightarrow 2HBr_{(r)};$$

B)
$$2O_{3(r)} \longleftrightarrow 3O_{2(r)}$$
?

 Как надо изменить температуру и давление, чтобы увеличить выход продуктов следующих промышленно важных реакций:

a)
$$CO_{(r)} + 2H_{2(r)} \longleftrightarrow CH_3OH_{(r)} + Q;$$

$$6) C_6 H_{14(r)} \longleftrightarrow C_6 H_{6(r)} + 4 H_{2(r)} - Q;$$

B)
$$Fe_2O_{3 \text{ (TD)}} + 3C_{\text{(TD)}} \longrightarrow 2Fe_{\text{(TD)}} + 3CO_{\text{(r)}}$$
?

§ 67

Химическое равновесие в растворах

Многие обратимые реакции протекают в водных растворах. Для количественного описания химического равновесия в растворах используют соответствующие константы равновесия. Знание этих констант позволяет рассчитать молярные концентрации всех частиц и тем самым полностью определить состав раствора.

Сильные кислоты в растворе полностью распадаются на ионы, поэтому их диссоциация — процесс практически необратимый:

$$HCl \longrightarrow H^+ + Cl^-;$$

$$HNO_3 \longrightarrow H^+ + NO_3^-$$
.

Равновесная концентрация ионов H^+ в растворах сильных кислот равна исходной концентрации кислоты. Например, в одномолярном растворе хлороводорода $[H^+] = c$ (HCl) = 1 моль/л.

Диссоциация слабых кислот обратима, поэтому в растворе устанавливается химическое равновесие. Для одноосновных кислот оно описывается общим уравнением:

$$HA \rightleftharpoons H^+ + A^-,$$

где ${\bf A}^-$ — кислотный остаток. Константу этого равновесия называют константой диссоциации кислоты:

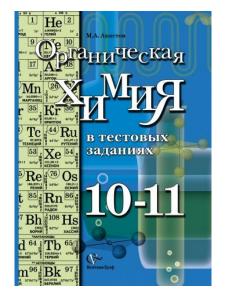
$$K_a = \frac{[\mathrm{H}^+][\mathrm{A}^-]}{[\mathrm{H}\Lambda]},$$

где индекс a (acid) обозначает кислотный тип диссоциации.

Практическая работа 2. Экспериментальное решение задач по теме «Халькогены»

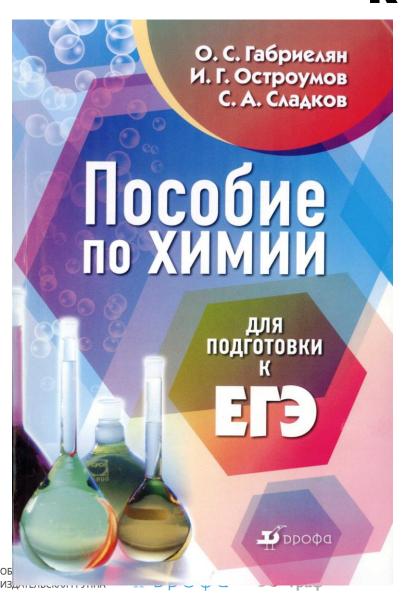
Реактивы: соляная, серная кислоты; сульфаты натрия, магния, меди(П); сульфит натрия; сульфид натрия; карбонат натрия; хлориды кальция, бария; частично окисленный на воздухе порошок сульфита натрия; фенолфталеин; лакмус; бромная вода.

- 1. Докажите качественный состав серной кислоты.
- 2. Определите при помощи химических реакций, является ли выданная вам соль сульфатом или хлоридом.
- 3. Докажите, что выданный вам образец сульфита натрия содержит примесь сульфата натрия.
- 4. В три пробирки налейте по 1 мл раствора сульфида натрия. Добавьте в первую раствор фенолфталеина, во вторую бромную воду, в третью раствор сульфата меди(II). Что вы наблюдаете? Напишите уравнения реакций.
- 5. В трёх пронумерованных пробирках без этикеток находятся растворы серной кислоты, сульфата магния, соляная кислота (в а р и а н т I); растворы серной кислоты, карбоната натрия, сульфата натрия (в а р и а н т II). Определите, в какой пробирке содержится каждое вещество.
- 6. Проведите химические реакции, которым соответствуют следующие сокращённые ионные уравнения:


$$Ca^{2+} + SO_4^{2-} = CaSO_4 \downarrow$$
; $SO_3^{2-} + 2H^+ = SO_2 \uparrow + H_2O$.

Напишите уравнения реакций в полном ионном и молекулярном виде.

Дополнительные пособия, ориентированные в том числе на самостоятельную подготовку



Пособие по химии для подготовки к ЕГЭ

Пособие ориентировано в первую очередь на ученика

Учитель может использовать пособие для подготовки мотивированных учеников к сдаче ЕГЭ

Пособие по химии для подготовки к ЕГЭ

		Окончание табл. ;
Ион или вещество	Реагент	Аналитический эффект
CI-	Ag ⁺	Выпадение белого творожистого осадка, темнеющего на воздухе
Br-	Ag ⁺	Выпадение творожистого осадка светло-желтого цвета
1-	Ag ⁺	Выпадение желтого творожистого осадка
PO ₄ 3-	Ag ⁺	Выпадение желтого осадка
Fe ²⁺	K ₃ [Fe(CN) ₆]	Выпадение синего осадка
Fe ³⁺	K ₄ [Fe(CN) ₆]	Выпадение синего осадка
	NH ₄ SCN	Кроваво-красная окраска раствора
Zn ²⁺ , Al ³⁺	OH-	Выпадение белого студневидного осадка, растворяющегося в избыт-ке щелочи
Cu ²⁺	OH-	Выпадение студневидного осадка голубого цвета
Na ⁺	_	Окрашивает бесцветное пламя горелки в желтый цвет
K ⁺	_	Окрашивает бесцветное пламя горелки в фиолетовый цвет
Ca ²⁺	_	Окрашивает бесцветное пламя горелки в красный цвет
Pb ²⁺	I-	Выпадение желтого осадка
NH ₄ ⁺	OH⁻, <i>t</i>	Появление запаха аммиака, посинение красной лакмусовой бумажки, появление тумана при поднесении стеклянной палочки, смоченной концентрированной НСІ
CO ₂	Ca(OH) ₂	Помутнение известковой воды
02	_	Вспыхивание тлеющей лучинки
H ₂	_	Лающий хлопок при поджигании

Качественные реакции на органические вещества (табл. 10)

Таблица 10

Вещество или класс веществ	Реагент	Аналитический эффект
Алканы	_	Горят бесцветным пламенем
Непредельные соединения	Br _{2(водн)}	Обесцвечивание бромной воды
(алкены, алкины, алкадиены)	KMnO ₄	Обесцвечивание подкис- ленного раствора перманганата калия
Алкины (терми- нальные)	Ag ₂ O _(ам. p-p)	Выпадение творожистого осадка серого цвета
Спирты первичные	CuO, t	Покраснение прокаленной медной проволоки
Спирты много- атомные	Свежеполу- ченный Cu(OH) ₂	Образование раствора ярко-синего цвета
Фенол	Fe ³⁺	Образование раствора си- ренево-фиолетового цвета
	Br _{2(водн)}	Выпадение белого осадка
Альдегиды	Ag ₂ O _(ам. р-р) , <i>t</i>	Образование налета металлического серебра на стенках сосуда — «серебряное зеркало»
	Cu(OH) ₂ , t	Выпадение кирпично- красного осадка Cu ₂ O
Карбоновые кислоты (низшие)	CO ₃ -	Бурное выделение газа
Анилин	Br _{2(водн)}	Выпадение белого осадка
Алифатические амины	_	Посинение красной лакмусовой бумаги
Углеводы (восста- навливающие)	Свежеполу- ченный Cu(OH) ₂ , <i>t</i>	Образование раствора ярко-синего цвета, при нагревании окраска исчеза ет и выпадает осадок кирпично-красного цвета

ОБЪЕДИНЕННАЯ ИЗДАТЕЛЬСКАЯ ГРУППА

Пособие по химии для подготовки к ЕГЭ

ОСНОВНЫЕ РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ ЗАДАНИЙ

Для того чтобы успешно и с наименьшими временными затратами выполнить задания части A, нужно руководствоваться следующими рекомендациями.

Внимательно читать задания и выделять ключевое слово или ключевые слова.

Основные свойства ослабевают в ряду гидроксидов

- 1) лития, калия, цезия
- 2) алюминия, магния, натрия
- 3) кальция, магния, бериллия
- 4) бора, бериллия, лития

Для этого задания ключевыми будут слова «основные свойства гидроксидов» и «ослабевают». Следовательно, экзаменующийся должен ориентироваться на нахождение в каждой тройке гидроксидов самого слабого основания, данного в конце ряда. Нетрудно заметить, что этой логике соответствует ответ 3.

Водород выделяется при взаимодействии раствора серной кислоты с металлом

1) свинцом

3) железом

2) медью

4) серебром

Для этого задания ключевыми будут слова «взаимодействие раствора серной кислоты с металлом». Следовательно, для выбора верного ответа необходимо учесть условия протекания данного процесса: положение металла в ряду напряжений до водорода (этот фактор позволит отсечь из списка ответы 2 и 4, так как серебро и медь находятся в ряду напряжений после водорода), а из оставшихся двух вариантов (свинец и железо) второму условию протекания процесса (образованию в его результате растворимой соли) соответствует только вариант 3.

В случае однозначно верного варианта ответа рекомендуется остановиться на нем и не рассматривать другие.

- 22. Метан можно получить нагреванием
- 1) ацетата натрия с гидроксидом натрия
- 2) хлорметана с натрием
- 3) метилового спирта с хлороводородом
- 4) метанола с оксидом меди (II)
- **23.** Двойная углерод-углеродная связь образуется в результате
 - 1) межмолекулярной дегидратации этанола
 - 2) внутримолекулярной дегидратации пропанола-1
 - 3) щелочного гидролиза хлорэтана
 - 4) пирелиза метана
- **24.** Превращение μ -бутана в 2-метилпропан возможно в результате реакции
 - 1) дегидрирования
- 3) присоединения

2) замещения

- 4) изомеризации
- 25. Реакция поликонденсации возможна для
- 1) 6-аминогексановой кислоты
- 2) 2-хлорпропановой кислоты
- 3) бутановой кислоты
- 4) этилового эфира уксусной кислоты
- **26.** Полимеризацией винилбензола C_6H_5CH = CH_2 полуот
- 1) хлоропреновый каучук
- 2) дивиниловый каучук
- 3) полистирол
- 4) фенолоформальдегидную смолу
- 27. Реакции присоединения наиболее характерны для
- 1) алканов

3) аренов

2) алкенов

- 4) алканолов
- **28.** Верны ли следующие утверждения о природном газе? А. Природный газ используется только в качестве топлива.
- Б. Природный газ содержит в своем составе значительное количество непредельных углеводородов.
 - 1) верно только А
- 3) верны оба суждения
- 2) верно только Б
- 4) оба суждения неверны

Пособие по химии для подготовки к ЕГЭ

жит примеси других веществ. Тем не менее устанавливается соответствие А-5. Аналогично и известковое молоко представляет собой суспензию гидроксида кальция (основание) в воде. Устанавливается соответствие Γ —2. Б также соответствует 2, так как гашеная известь — это гидроксид кальция, получаемый гашением оксида кальция (негашеной извести) водой (В-1). Ответ: 5221.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

1. Установите соответствие между формулой вещества и классом (группой) органических соединений, к которому(ой) оно принадлежит.

ФОРМУЛА	КЛАСС (ГРУППА)
ВЕЩЕСТВА	ОРГАНИЧЕСКИХ
	СОЕДИНЕНИЙ
A) $C_{12}H_{22}O_{11}$	1) сложные эфиры
Б) C ₃ H ₇ CHO	2) амины
B) $C_6H_5NH_2$	3) карбоновые кислоты
Γ) $C_2H_5COOCH_3$	4) альдегиды
	5) спирты
	6) углеволы

2. Установите соответствие между формулой вещества и классом (группой) неорганических соединений, к которому(ой) оно принадлежит.

ФОРМУЛА	КЛАСС (ГРУППА)
ВЕЩЕСТВА	НЕОРГАНИЧЕСКИХ
	СОЕДИНЕНИЙ
A) $K_2Cr_2O_7$	1) основание
Б) HMnO ₄	2) основный оксид
B) BeO	3) амфотерный оксид
Γ) Sr(OH) ₂	4) кислотный оксид
70. 100 Miles	5) кислота

3. Установите соответствие между названием органиче-

6) соль

кой кислоты и ее формулой.	
название кислоты	ФОРМУЛА КИСЛОТЫ
А) бензойная	1) HCOOH
Б) стеариновая	2) CH ₃ COOH
В) уксусная	3) C_6H_5COOH
Г) олеиновая	4) C ₁₅ H ₃₁ COOH
	5) C ₁₇ H ₃₃ COOH
	6) C ₁₇ H ₃₅ COOH

4. Установите соответствие между названием вещества и классом (группой) органических соединений, к которому(ой) оно принадлежит.

Join's (OIL) OLLO INFILL	
название	КЛАСС (ГРУППА)
ВЕЩЕСТВА	ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
А) толуол	1) сложные эфиры
Б) аланин	2) ацетиленовые углеводороды
В) пропин	3) ароматические углеводороды
Г) метилацетат	4) этиленовые углеводороды
-,	5) спирты
	6) аминокислоты

5. Установите соответствие между названием соединения и содержащейся в его молекуле функциональной группой.

название	ФУПКЦИОПАЛЬНАЛ
соединения	ГРУППА
А) метанол	1) карбонильная группа
Б) анилин	2) аминогруппа
В) капроновая кислота	3) гидроксильная группа
Г) метаналь	4) альдегидная группа
-,	5) карбоксильная группа

6. Установите соответствие между названием вещества и общей формулой класса органических соединений.

названиЕ	ОБЩАЯ ФОРМУЛА
ВЕЩЕСТВА	КЛАССА ОРГАНИЧЕСКИХ
	соединений
А) 2-метилбутаналь	1) $C_nH_{2n}O$
Б) 1,3-диэтилбензол	2) $C_n H_{2n-6}$
В) бутанол-2	3) $C_n H_{2n-2}$
Г) пропин	4) $C_n H_{2n+2} O$
	5) $C_n H_{2n-4}$
	$6) C_n H_{2n} O_2$

7. Установите соответствие между названием соли и

уппой, к которой она принадлежи [.] НАЗВАНИЕ СОЛИ	г. ГРУППА СОЛЕЙ
А) гидрокарбонат натрия	1) средние
Б) перхлорат лития	2) кислые
В) гексацианоферрат (II) калия	3) основные
Г) гидроксохлорид меди (II)	4) комплексные
-,	5) смешанные
	6) двойные

8. Установите соответствие между названиями веществ и классами (группами) неорганических соединений, к которым они принадлежат.

Общая и неорганическая химия в тестовых заданиях. 10-11 классы

3) янтрид кремния 4) фторид кремния A27. Со щелочами при нагревании реагирует 1) Si 2) C 3) Mg 4) Fe A28. С оксидом кремния реагирует кислота 1) фтороводородная 2) хлороводородная 3) бромоводородная 4) иодоводородная 4) иодоводородная 4) иодоводородная 4) иодоводородная A29. Для получения фосфора фосфат кальция прокаливают без доступа воздуха с углеродом. Обязательный компонент этой смеси 1) SiO ₂ 2) Na ₂ SiO ₃ 3) SiC 4) Si A30. При пропускании углекислого газа через раствор силиката натрия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃ B4.		ду символом химического элемен ного соединения и высшего гид
4) фторид кремния A27. Со щелочами при нагревании реагирует 1) Si 2) C 3) Mg 4) Fe A28. С оксидом кремния реагирует кислота 1) фтороводородная 2) хлороводородная 3) бромоводородная 4) иодоводородная 4) иодоводородная 4) иодоводородная A29. Для получения фосфора фосфат кальция прокаливают без доступа воздуха с углеродом. Обязательный компонент этой смеси 1) SiO ₂ 2) Na ₂ SiO ₃ 3) SiC 4) Si A30. При пропускании углекислого газа через раствор силиката натрия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃ B4. 4асть В B1. Установите соответствие между формулой карбида и органическим продуктом его реакции с водой.	роксида.	ного соединения и высшего гид
А27. Со щелочами при нагревании реагирует 1) Si 2) C 3) Mg 4) Fe А28. С оксидом кремния реагирует кислота 1) фтороводородная 2) хлороводородная 3) бромоводородная 4) иодоводородная 4) иодоводородная А29. Для получения фосфора фосфат кальция прокаливают без доступа воздуха с углеродом. Обязательный компонент этой смеси 1) SiO ₂ 2) Na ₂ SiO ₃ 3) SiC 4) Si А30. При пропускании углекислого газа через раствор силиката натрия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃ В4. Часть В В1. Установите соответствие между формулой карбида и органическим продуктом его реакции с водой.		
27. Со щелочами при нагревании реагирует 1) Si 2) C 3) Mg 4) Fe A28. С оксидом кремния реагирует кислота 1) фтороводородная 2) хлороводородная 3) бромоводородная 4) иодоводородная 4) иодоводородная 429. Для получения фосфора фосфат кальция прокаливают без доступа воздуха с углеродом. Обязательный компонент этой смеси 1) SiO₂ 2) Na₂SiO₃ 3) SiC 4) Si A30. При пропускании углекислого газа через раствор силиката натрия наблюдается его помутнение из-за образования осадка 1) SiO₂ 2) H₂SiO₃ 3) SiCO₃ 4) NaHSiO₃ Hactь B B1. Установите соответствие между формулой карбида и органическим продуктом его реакции с водой.	імвол элемента	
2) С 3) Mg 4) Fe A28. С оксидом кремния реагирует кислота 1) фтороводородная 2) хлороводородная 3) бромоводородная 4) иодоводородная 4) иодоводородная A29. Для получения фосфора фосфат кальция прокаливают без доступа воздуха с углеродом. Обязательный компонент этой смеси 1) SiO ₂ 2) Na ₂ SiO ₃ 3) SiC 4) Si A30. При пропускании углекислого газа через раствор силиката натрия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃ B4. Hactb B B1. Установите соответствие между формулой карбида и органическим продуктом его реакции с водой.		Водородное соединение, высший гидроксид
3) Mg 4) Fe A28. С оксидом кремния реагирует кислота 1) фтороводородная 2) хлороводородная 3) бромоводородная 4) иодоводородная 4) иодоводородная 4) иодоводородная A29. Для получения фосфора фосфат кальция прокаливают без доступа воздуха с углеродом. Обязательный компонент этой смеси 1) SiO ₂ 2) Na ₂ SiO ₃ 3) SiC 4) Si A30. При пропускании углекислого газа через раствор силиката натрия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃ B4. Hactb B B1. Установите соответствие между формулой карбида и органическим продуктом его реакции с водой.	C:	1) H ₄ 9, H ₉ 9O ₃
4) Fe A28. С оксидом кремния реагирует кислота 1) фтороводородная 2) хлороводородная 3) бромоводородная 4) иодоводородная 4) иодоводородная A29. Для получения фосфора фосфат кальция прокаливают без доступа воздуха с углеродом. Обязательный компонент этой смеси 1) SiO ₂ 2) Na ₂ SiO ₃ 3) SiC 4) Si A30. При пропускании углекислого газа через раствор силиката натрия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃ B4. 4ACTЬ B BB. Установите соответствие между формулой карбида и органическим продуктом его реакции с водой.		
А28. С оксидом кремния реагирует кислота 1) фтороводородная 2) хлороводородная 3) бромоводородная 4) иодоводородная А29. Для получения фосфора фосфат кальция прокаливают без доступа воздуха с углеродом. Обязательный компонент этой смеси 1) SiO ₂ 2) Na ₂ SiO ₃ 3) SiC 4) Si А30. При пропускании углекислого газа через раствор силиката натрия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃ В4. Установите соответствие между формулой карбида и органическим продуктом его реакции с водой.	Te	2) H ₃ , H ₃ O ₄
А28. С оксидом кремния реагирует кислота 1) фтороводородная 2) хлороводородная 3) бромоводородная 4) иодоводородная А29. Для получения фосфора фосфат кальция прокаливают без доступа воздуха с углеродом. Обязательный компонент этой смеси 1) SiO ₂ 2) Na ₂ SiO ₃ 3) SiC 4) Si A30. При пропускании углекислого газа через раствор силиката натрия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃ В4. Часть В В1. Установите соответствие между формулой карбида и органическим продуктом его реакции с водой.	P	3) H_2 3, H_2 3 O_4
1) фтороводородная 2) хлороводородная 3) бромоводородная 4) иодоводородная 4) иодоводородная A29. Для получения фосфора фосфат кальция прокаливают без доступа воздуха с углеродом. Обязательный компонент этой смеси 1) SiO ₂ 2) Na ₂ SiO ₃ 3) SiC 4) Si A30. При пропускании углекислого газа через раствор силиката натрия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃ В4. Часть В В1. Установите соответствие между формулой карбида и органическим продуктом его реакции с водой.	Cl	4) H ₂ , H ₂ ₃ O ₄
2) хлороводородная 3) бромоводородная 4) иодоводородная A29. Для получения фосфора фосфат кальция прокаливают без доступа воздуха с углеродом. Обязательный компонент этой смеси 1) SiO ₂ 2) Na ₂ SiO ₃ 3) SiC 4) Si A30. При пропускании углекислого газа через раствор силиката натрия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃ В4. В4. В4. В5. Часть В В1. Установите соответствие между формулой карбида и органическим продуктом его реакции с водой.		5) H ₃ 9, H ₃ 9O ₄
2) хлороводородная 3) бромоводородная 4) иодоводородная A29. Для получения фосфора фосфат кальция прокаливают без доступа воздуха с углеродом. Обязательный компонент этой смеси 1) SiO ₂ 2) Na ₂ SiO ₃ 3) SiC 4) Si A30. При пропускании углекислого газа через раствор силиката натрия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃ В4. В4. В4. В5. Часть В В1. Установите соответствие между формулой карбида и органическим продуктом его реакции с водой.		3 3 4
4) иодоводородная 4) иодоводородная 429. Для получения фосфора фосфат кальция прокаливают без доступа воздуха с углеродом. Обязательный компонент этой смеси 1) SiO ₂ 2) Na ₂ SiO ₃ 3) SiC 4) Si 430. При пропускании углекислого газа через раствор силиката натрия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃ 44 44 45 46 46 46 47 48 48 49 49 40 40 41 41 42 43 44 44 44 45 46 46 46 47 48 48 49 49 49 40 40 41 41 42 43 44 44 45 46 46 47 48 48 48 49	V	THE STATE OF THE STATE OF THE BOOKTSI
4) иодоводородная А29. Для получения фосфора фосфат кальция прокаливают без доступа воздуха с углеродом. Обязательный компонент этой смеси 1) SiO ₂ 2) Na ₂ SiO ₃ 3) SiC 4) Si А30. При пропускании углекислого газа через раствор силиката натрия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃ В4. В4. В5. Часть В В1. Установите соответствие между формулой карбида и органическим продуктом его реакции с водой.	установите соответствие межд	ду схемой окислительно-восстан
А29. Для получения фосфора фосфат кальция прокаливают оез доступа в воздуха с углеродом. Обязательный компонент этой смеси 1) SiO ₂ 2) Na ₂ SiO ₃ 3) SiC 4) Si А30. При пропускании углекислого газа через раствор силиката натрия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃ В4. Насть В В1. Установите соответствие между формулой карбида и органическим продуктом его реакции с водой.	вительной реакции и вещест становителем.	вом, которое является в ней во
па воздуха с углеродом. Обязательный компонент этой смеси 1) SiO ₂ 2) Na ₂ SiO ₃ 3) SiC 4) Si АЗО. При пропускании углекислого газа через раствор силиката натрия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃ В В В В В В В В В В В В В В В В В В	хема реакции	Восстановитель
1) SiO ₂ 2) Na ₂ SiO ₃ 3) SiC 4) Si A30. При пропускании углекислого газа через раствор силиката натрия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃ Часть В В1. Установите соответствие между формулой карбида и органическим продуктом его реакции с водой.	$Si + C \rightarrow SiC$	1) Si
2) Na ₂ SiO ₃ 3) SiC 4) Si A30. При пропускании углекислого газа через раствор силиката натрия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃ Насть В В1. Установите соответствие между формулой карбида и органическим продуктом его реакции с водой.	$PbS + H_9O_9 \rightarrow PbSO_4 + H_2O$	2) C
3) SiĆ 4) Si A30. При пропускании углекислого газа через раствор силиката натрия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃ Hactb B B1. Установите соответствие между формулой карбида и органическим продуктом его реакции с водой.		3) PbS
4) Si A30. При пропускании углекислого газа через раствор силиката натрия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃ B4. B4. B5. B6. B6. B7. B7. B8. B9. B9. B1. B1. B1. B1. B1. B3. B3. B3. B3. B3. B4. B3. B4. B3. B4. B5. B6. B6. B7. B7. B8. B9. B9. B1. B1. B1. B1. B1. B1. B2. B3. B3. B3. B4. B3. B4. B3. B4. B4. B4. B5. B6. B6. B7. B7. B8. B9. B9. B1. B1.	$SnO + NO_2 \rightarrow SnO_2 + NO$,
A30. При пропускании углекислого газа через раствор силиката натрия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃ Часть В В1. Установите соответствие между формулой карбида и органическим продуктом его реакции с водой.	$GeO_2 + H_2 \rightarrow Ge + H_2O$	4) NO ₂
рия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃		5) SnO
рия наблюдается его помутнение из-за образования осадка 1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃		6) H ₂
1) SiO ₂ 2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃		
2) H ₂ SiO ₃ 3) SiCO ₃ 4) NaHSiO ₃	Установите соответствие меж	сду исходными веществами и су
3) SiCO ₃ 4) NaHSiO ₃ 4 Насть В В1. Установите соответствие между формулой карбида и органическим продуктом его реакции с водой.	мой коэффициентов в сокращ	ённом ионном уравнении.
4) NaHSiO ₃ 4) NaHSiO ₃ 4 Расть В Валичений продуктом его реакции с водой.	сходные вещества	Сумма коэффициентов
Часть В В1. Установите соответствие между формулой карбида и органическим продуктом его реакции с водой.	Pb(OH) ₉ + HNO ₃ (pas6.) →	1) 4
Насть В В В В В В В В В В В В В В В В В В В		
Часть В В1. Установите соответствие между формулой карбида и органическим продуктом его реакции с водой.	$HCl + Sn(OH)_2 \rightarrow$	2) 5
В1. Установите соответствие между формулой карбида и органическим продуктом его реакции с водой.	SiO ₂ + NaOH →	3) 6
ским продуктом его реакции с водой.	Pb + AgNO ₃ →	4) 8
ским продуктом его реакции с водой.		5) 16
A) Al ₄ C ₈ (1) CH ₄		
E) CaC ₂ 2) C ₃ H ₄		
B) $Mg_{9}C_{3}$ 3) $C_{9}H_{9}$		
Γ) Na ₂ C ₂		
1 / 1 / 1 / 2 / 2		

Общая и неорганическая химия в тестовых заданиях. 10-11 классы

15. Элементы VIA-группы

15. Элементы VIA-группы	
Часть В	
В1. Установите соответствие ме	жду химическими элементами и про-
являемыми ими степенями о	
Химический элемент	Степени окисления
A) O	1) -2, +4, +6
Б) S	2) -2, +2, +4, +6
B) Se	3) -2, -1, +2
Г) Те	
	жду схемами реакций и изменением
степени окисления окислите	елей.
Схема реакции	Изменение степени
	окисления окислителя
A) H_2SO_4 (конц.) + $Mg \rightarrow MgSO_4$	$1 + 1 > S^{-2} \rightarrow S^{+4}$
+ H ₉ S + H ₉ O	2) $S^{+6} \rightarrow S^{+4}$
Б) $H_2SO_4(\text{конц.}) + S \xrightarrow{t} SO_9 + H_9$	$3) S^{+4} \rightarrow S^0$
B) S + H ₉ \rightarrow H ₉ S	4) $S^{+6} \rightarrow S^{-2}$
$\begin{array}{c} \text{H}_{9} \text{S} + \text{H}_{2} \rightarrow \text{H}_{2} \text{S} \\ \text{F) H}_{9} \text{S} + \text{SO}_{9} \rightarrow \text{S} + \text{O}_{9} \end{array}$	5) $S^0 \to S^{-2}$
1) 1123 + 302 + 3 + 02	,
R3 VCTAHORNTO COOTRATOTRIO MO	жду названием природного минера-
ла, содержащего серу, и его	жду названием природного минера-
Название минерала	Формула минерала
А) медный колчедан	1) FeS ₉
Б) пирит	2) CuFeS ₉
В) горькая соль	3) PbS
Г) глауберова соль	4) MgSO ₄ · 7H ₂ O
-,,,p	5) Na ₉ SO ₄ · 10H ₉ O
	0/11004 101120
В4. Установите соответствие мех	жду реагентами и твёрдым или газо-
образным продуктом химиче	
Реагенты	Твёрдый или газообразный
	продукт
A) $Na_2S_2O_3 + H_9SO_4(pas6.) \rightarrow$	1) H _o S
E) N= C + H CO (past.)	1/1125

2) H

4) NO + NO₂ 5) SO₂

3) S

В5. Установите соответст пающими в роли вос <i>Реагенты</i> А) $SO_2 + NO_2 \rightarrow$ Б) $H_2S + Br_2 \rightarrow$ В) $SO_2 + H_2S \rightarrow$ Г) $S + H_2 \rightarrow$	гвие между реагентами и веществами, выстустановителей.
В6. Концентрированная	серная кислота реагирует без нагревания с
-/ 54141503011	Резимрует осз нагревания с
2) железом	
3) алюминием	v
4) сульфатом железа (II)	· · · · · · · · · · · · · · · · · · ·
5) хлоридом натрия (тв.	
6) полиэтиленом	
В7. В химическую реакци	O C COPON POTITORIES
1) Fe	ю с серои вступают:
2) H ₂ O	
3) KÕH	
4) Hg	
5) N ₂	
6) Au	4 0 1
В8. Соли, которые подвер	гаются гидролизу:
2) Na ₉ SO ₄	
3) Na ₂ S	*
4) ZnŠ	
5) Na ₂ SO ₃	
6) CuSO ₄	
4,00 /0 11, 21,0 70 5 N KN	ассу (г/моль) соли, содержащей 12,17 % N, слород.
Ответ: (Запил	шите число с точностью до целых.)
B10. Чему равна масса сер 8 %-го раствора SO ₀ в F	ы (г), необходимая для получения 200 г LSO, (олеума)?
. (Запин	2—4 (слојша). шите число с точностью до целых.)
131	

 $^{\circ}$ Na₉S + H₉SO₄ (pa₃δ.) →

B) $Na_9SO_3 + H_9SO_4(pa36.) \rightarrow$

Γ) NaNO₂ + H₂SO₄ (pas6.) →

Органическая химия в тестовых заданиях. 10-11 классы

8. Одноатомные спирты

ВЗ. На следующей схеме показано распределение электронной плотности в молекуле спирта

$$\overset{3 \ \delta^{+}}{\text{CH}_{3}} \longrightarrow \overset{2 \ \delta^{+}}{\text{CH}_{2}} \longrightarrow \overset{1 \ \delta^{+}}{\text{CH}_{2}} \longrightarrow \overset{\delta^{-}}{\text{O}} \longleftarrow \overset{\delta^{+}}{\text{H}}$$

Неверные пояснения к схеме

- 1) гидроксильная группа проявляет отрицательный индуктивный эффект, поэтому ${\bf C}^1$ электрофильный центр молекулы. Это мишень для атаки электрофильных частиц
- 2) атом О, имея частичный отрицательный заряд и неподеленные пары электронов, представляет собой центр основности
- 3) эффективные заряды $\delta_1^+ > \delta_2^+ > \delta_3^+$. Причиной уменьшения зарядов на атомах углерода является уменьшение отрицательного индуктивного эффекта по мере удаленности атомов углерода от атома кислорода
- 4) электроотрицательность атома кислорода выше электроотрицательности атома водорода, поэтому О—Н связь полярна и спирты проявляют свойства слабых кислот
- 5) связь С—О менее поляризуема, чем связь С—Сl, поэтому OH-группа в спиртах труднее замещается нуклеофилами, чем атом хлора в галогеналканах
- 6) спирты амфотерные соединения, так как проявляют свойства оснований и кислот
- реакции нуклеофильного замещения (нуклеофилы Cl⁻, Br⁻) гидроксильной группы не могут протекать в кислой среде, так как H⁺, соединяясь с атомом кислорода, приводит к уменьшению δ⁺ заряда на атоме углерода, что затрудняет атаку нуклеофильной частицы

8. Одноатомные спирты

В4. Установите соответствие между исходными веществами и продуктами реакции.

Исходные вещества

A)
$$H$$
 H H C H

$$H_3C$$
 H
 CH
 CH_3
 $K_2Cr_2O_7$
 OH

$$H_{3}$$
С H_{3} С

Органическая химия в тестовых заданиях. 10-11 классы

12. Карбоновые кислоты и их производные

A25. В результате нагревания β -метилмасляной кислоты в присутствии P_2O_5 образуется

1) 3-метилбутен-2-овая кислота

- 3) ацетон и уксусная кислота
- 4) этан и акриловая кислота

А26. Формула вещества, являющегося конечным продуктом превращений

метилпропановая кислота + $\mathrm{NH_3} \longrightarrow \mathrm{A} \xrightarrow{t}$

1) (CH₃)₉CHCOONH₄

2) H₃C COOF

4)
$$H_2C$$
 ONF

12. Карбоновые кислоты и их производные

A27. Структурная формула основного продукта реакции изомасляной кислоты с $\mathrm{PCl}_{\mathtt{s}}$

A28. Неверно указаны продукты реакции

- 1) HCOOH + NaOH → HCOONa + H₂O
- 2) 2HCOOH + Mg → Mg(HCOO)₉ + H₉↑
- 3) 2HCOOH + $Cu(OH)_2 \xrightarrow{t} Cu(HCOO)_2 + 2H_2O$

4) HCOOH+NaHCO₃
$$\longrightarrow$$
 H—C + H₂O + CO₂↑ ONa

А29. Условия, в наибольшей степени способствующие галогенированию кислоты в α -положение по схеме

$$H_3C$$
 $COOH$ $+ Cl_2$ $?$ CI $COOH$ $+ HCI$ $COOH$

- 1) свет и повышение давления
- 2) повышение давления
- 3) свет и нагревание
- 4) присутствие красного фосфора

ИЗДАТЕЛЬСКАЯ ГРУППА

Органическая химия в тестовых заданиях. 10-11 классы

12. Карбоновые кислоты и их производные

3) O
$$CH_2$$
 H_3C OH Br_2 H_2C CH_3 H_3C CH_3

АЗ9. Структурная формула продукта, образующегося при взаимодействии реактива Гриньяра с эфиром:

Получение

А40. Взаимодействие воды со сложным эфиром — реакция

1) гидролиза

ОБЪЕДИНЕ

ИЗДАТЕЛЬО

- 3) гидрогенизации
- 2) гидрирования
- 4) гидратации

234

12. Карбоновые кислоты и их производные

А41. Конечные продукты гидролиза 1,1,1-трибромбутана С, Н, Вг, + Н, О (изб.)

3) OH
$$CH_2$$
 CH_3 + 3HBr OH

4)
$$\mu$$
-C₄H₁₀ + 3HBrO

А42. Уксусную кислоту нельзя получить реакцией ацетальдегида

- 1) с бромной водой
- 2) с гидроксидом меди (II)
- 3) с гидроксидом железа (II)
- 4) с аммиачным раствором АдоО

А43. Алканы могут быть окислены кислородом в присутствии перманганата калия при температуре 100 °C. Формула наименее вероятного продукта реакции

- 1) CH₃—CH₉—CH₉—COOH
- 2) CH₃—CH₉—COOH
- 3) HCOOH
- 4) CH₂COOH

А44. Кислота не образуется в результате химической реакции

1)
$$CH_3$$
— CH_2 — CO — CH_3 + $K_2Cr_2O_7$ + H_2SO_4 \xrightarrow{t}

2) R—CHO + Cu(OH)₉ \xrightarrow{t}

Химия в таблицах

Таблица 59.	Химические свойства	и получение простых веществ г	галогенов
-------------	---------------------	-------------------------------	-----------

Фтор	Хлор	Бром	Иод —
	Окислительн	ые свойства	"曹皇孝言妻孙汉"
Взаимодействие с простыми веществами (происходит без нагревания со взрывом или образованием пламени) $H_2 + \overset{0}{F_2} \to 2H\overset{-1}{F} + Q$ $Si + 2\overset{0}{F_2} \to Si\overset{-1}{F_4}$ $S + 3\overset{0}{F_2} \to SF_6 + Q$ при нагревании соединяется с хлором, криптоном и ксеноном: $Xe + 2\overset{0}{F_2} \to Xe\overset{-1}{F_4}$ Взаимодействие со сложными веществами $2H_2O(r) + 2\overset{0}{F_2}(r) \to O_2 + Si\overset{-1}{F_4}$ $2KOH(p-p) + 2\overset{0}{F_2} \to 2KF + OF_2 + H_2O$	Взаимодействие с простыми веществами $3\overset{\circ}{\text{Cl}}_2 + 2\overset{\circ}{\text{Cr}} \to 2\overset{+3}{\text{CrCl}}_3$ $\overset{\circ}{\text{Cl}}_2 + \overset{\circ}{\text{H}}_2 \to 2\overset{+1}{\text{HCl}}$ $5\overset{\circ}{\text{Cl}}_2 + 2\overset{\circ}{\text{P}} \to 2\overset{+5}{\text{PCl}}_5$ $\overset{-1}{\text{SCl}}_2 + 2\overset{\circ}{\text{P}} \to 2\overset{+5}{\text{PCl}}_5$ Взаимодействие со сложными веществами $\overset{\circ}{\text{Cl}}_2 + 2\overset{\circ}{\text{KBr}} \to 2\overset{-1}{\text{KCl}} + \overset{-1}{\text{Br}}_2$ $\overset{\circ}{\text{Cl}}_2 + 2\overset{\circ}{\text{KI}} \to 2\overset{-1}{\text{KCl}} + \overset{1}{\text{I}}_2$	Взаимодействие c простыми $seщecmsamu$ $3Br_2 + 2Fe \rightarrow 2FeBr_3$ $3Br_2 + 2P \rightarrow 2PBr_3$ B a	Взаимодействие с простыми веществами $I_2 + 2Cu \rightarrow 2CuI$ $3I_2 + 2P \rightarrow 2PI_3$

пава в. Неметаллы и их соединения

Химия в таблицах

Восстановительные свойства			
Фтор — самый сильный окислитель. Восстановительных свойств не проявляет	$5\overset{0}{\text{Cl}}_{2} + I_{2} + 6H_{2}O \rightarrow 10H\text{Cl} + + 2H\text{IO}_{3}$	$5Cl_{2} + Br_{2} + 6H_{2}O \rightarrow$ $\rightarrow 10HCl + 2HBrO_{3}$ $5Br_{2} + I_{2} + 6H_{2}O \rightarrow$ $\rightarrow 10HBr + 2HIO_{3}$	$5Br_2 + \overset{\circ}{I_2} + 6H_2O \rightarrow$ $\rightarrow 10HBr + 2HIO_3$ $\overset{\circ}{I_2} + 2KCIO_3 \rightarrow 2KIO_3 + CI_2$ $\overset{\circ}{I_2} + 2KBrO_3 \rightarrow 2KIO_3 + Br_2$ $\overset{\circ}{I_2} + 10HNO_3 \rightarrow$ $\rightarrow 2HIO_3(конц.) +$ $+ 10NO_2 + 4H_2O$
	Диспропорц	ионирование	
		$ \begin{array}{c} 0 \\ Br_{2} + H_{2}O \rightleftharpoons HBrO + HBr \\ 0 \\ Br_{2} + 6KOH \xrightarrow{t} KBrO_{3} + \\ + 5KBr + 3H_{2}O \\ 0 \\ Br_{2} + 2KOH \to KBrO + \\ + KBr + H_{2}O \end{array} $	$ \begin{array}{c} 0 \\ I_2 + H_2O \rightleftharpoons HIO + HI \\ 0 \\ I_2 + 6KOH \stackrel{t}{\rightarrow} KIO_3 + 5KI + \\ + 3H_2O \\ 0 \\ I_2 + 2KOH \rightarrow KIO + KI + \\ + H_2O \end{array} $
Получение			
Электролиз расплава KF : $2KF \xrightarrow{9Л. TOK} 2K + F_2$ Единственный способ получения фтора	Электролиз: $2\text{NaCl} \xrightarrow{\text{9л. ток}} 2\text{Na} + \text{Cl}_2 \uparrow$ $2\text{NaCl} + 2\text{H}_2\text{O} \xrightarrow{\text{9л. ток}}$ $\xrightarrow{\text{9л. ток}} 2\text{NaOH} + \text{Cl}_2 \uparrow + \text{H}_2 \uparrow$	Лабораторные способы: $2\text{NaBr} + \text{Cl}_2 \rightarrow \text{Br}_2 + 2\text{NaCl}$ $14\text{HBr} + \text{K}_2\text{Cr}_2\text{O}_7 \rightarrow 2\text{KBr} + 2\text{CrBr}_3 + 3\text{Br}_2 + 7\text{H}_2\text{O}$	Обработка подземных рассолов нитритом натрия (избирательно извлекается иод): $2\text{NaI} + 2\text{NaNO}_2 + 2\text{H}_2\text{SO}_4 \rightarrow \text{I}_2 + 2\text{NO} + 2\text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O}$

Химия в таблицах

Раздел 1. Общая и неорганическая химия

- Взаимодействие белого фосфора с концентрированной азотной кислотой при нагревании описывается уравнением
 - 1) $P_4 + 12HNO_3 \rightarrow 4PH_3\uparrow + 12NO\uparrow + 12O_2\uparrow$
 - 2) $P_4 + 4HNO_3 \rightarrow 4PN + 5O_2\uparrow + 2H_2O$
 - 3) $P_4 + 2HNO_3 \rightarrow H_3PO_4 + 20NO_2 \uparrow + 4H_3O$
 - 4) P_4 + 5HNO₃ \rightarrow NH₄↑ + 2P₂O₃ + H₂O + 4NO₅↑
- В1. Определите массовую долю азотной кислоты (%), если 200 г ее раствора нейтрализуют 11,2 г гидроксида калия. (Ответ запишите цифрами.)
- В2. Сумма коэффициентов в уравнении окислительно-восстановительной реакции

 $NaMnO_4 + KNO_2 + H_2SO_4 \rightarrow MnSO_4 + KNO_3 + Na_2SO_4 + H_2O$ pabha ____. (Ответ запишите цифрами.)

- вз. Рассчитайте объемную долю более тяжелого газа в смеси, состоящей из водорода и аммиака и имеющей плотность 0,73 г/л при давлении 110 кПа и температуре −20 °C. (Ответ запишите цифрами.)
- **В4.** Теплота образования оксида фосфора (V) равна 1548 кДж/моль. Рассчитайте, какое количество теплоты выделится при сгорании фосфора массой 155 г. (Ответ запишите цифрами.)

Вариант 2

- А1. В хлориде аммония отсутствуют химические связи
 - 1) ковалентные полярные
- 3) ковалентные неполярные
- 2) донорно-акцепторные
- 4) ионные
- Формула водородного соединения элемента подгруппы азота с наиболее прочной химической связью
 - 1) SbH,

3) PH₃

2) NH₃

- 4) AsH₂
- АЗ. Формулы веществ X и Y в схеме превращений

 K_2 HPO $_4$ $\xrightarrow{+X}$ KH_2 PO $_4$ $\xrightarrow{+Y}$ Ca_3 (PO $_4$) $_2$ соответственно 1) H_3 PO $_4$ и Ca(OH) $_2$ 3) H_3 PO $_4$ и CaCl $_2$

- 2) KOH и Ca(OH),
- 4) H₃PO₄ и CaO

глава 6. Неметаллы и их соединения

- Разложение нитрата алюминия при нагревании описывается урав-
 - 1) $2AI(NO_3)_3 \rightarrow 2AIN + 4NO_2\uparrow + 5O_2\uparrow$
 - 2) $2AI(NO_3)_3 \rightarrow 2AI(NO_2)_3 + 3O_2\uparrow$
 - 3) $AI(NO_3)_3 \rightarrow AI + NO_3\uparrow + O_3\uparrow$
 - 4) $4 \text{ Al(NO}_3)_3 \rightarrow 2 \text{Al}_2 \text{O}_3 + 12 \text{NO}_2 \uparrow + 3 \text{O}_2 \uparrow$
- **в1.** В производстве азотной кислоты с массовой долей вещества 98 % на каждую тонну раствора кислоты расходуется 0,2 т аммиака. Найдите выход кислоты в % от теоретически возможного. (Ответ запишите цифрами.)
- ва. Запишите уравнение реакции между фосфином и концентрированной азотной кислотой. Сумма коэффициентов в уравнении этой окислительно-восстановительной реакции равна _____. (Ответ запишите в виде натурального числа.)
- вз. После прокаливания 11,0 г смеси нитратов калия и натрия масса твердого вещества уменьшилась на 1,92 г. Найдите массу KNO₃ в исходной смеси (г). (Ответ запишите цифрами.)
- В4. Смешали равные массы азота и кислорода. Вычислите объемную долю азота в полученной смеси. (Ответ запишите цифрами.)

Тема 5. Углерод, кремний и их соединения

Аллотропные модификации углерода и кремния

Алмаз: очень твердое прозрачное кристаллическое вещество. Атомная кристаллическая решетка тетраэдрического строения. Атомы углерода нахо-Дятся в состоянии sp^3 -гибридизации, все связи С—С равны. Не обладает тепло- и электропроводностью, так как в кристалле отсутствуют свободные электроны.

Графит: мягкое темно-серое вещество с металлическим блеском. Атомная кристаллическая решетка имеет слоистое строение. Атомы углерода нахо-Дятся в состоянии sp^2 -гибридизации, образуя по три равноценные связи в слое. Четвертый электрон каждого атома углерода обобществляется между всеми атомами кристалла по типу металлической связи, чем объясняются

Центр основного и среднего образования Объединенной издательской группы "ДРОФА"-"Вентана-Граф" 123308, Москва, ул. Зорге, д. 1 тел.: 8-800-200-05-50

Методист по химии: Плечова Ольга Гарриевна plechova.og@drofa.ru

